116 research outputs found

    Zapla range, subandean ranges, Jujuy province

    Get PDF
    The Subandean Ranges (Sierras Subandinas) are placed between the Eastern Cordillera (Cordillera Oriental) to the west and Chaco–pampean Plain to the east, in northwestern Argentina. Stratigraphic and structural studies of this geological province were carried out by Bonarelli (1913, 1921), Baldis et al.(1975), Mingramm et al. (1979), and Ramos (1999), among others. Ancient deposits of the Subandean Ranges correspond to the Proterozoic and Ordovician System, which are restricted to the western part. Silurian–Devonian rocks of wider distribution integrate a thick marine–deltaic succession tapering to the east, which is linked to a foreland basin (Turner, 1967; Ramos, 1999). The Ocloyic unconformity (Turner & Méndez, 1975; Ramos, 1986) separates Lower–Middle Ordovician rocks from Hirnantian and younger deposits (Moya, 1999). The Lower Paleozoic succession is covered by thick marine and continental sequences of Neopaleozoic, Mesozoic and Cenozoic ages. An angular unconformity is present between ancient deposits and Miocene to Quaternary sediments. The Subandean Ranges show wide east–vergence anticlines, limited by thrusts and overthrusts, whose detachment levels are Silurian–Devonian shales (Ramos, 1999). The structural style of this geological province allows for the identification of the Interandean System to the west, and the Subandean System sensu stricto to the east (Ramos, op. cit.). The Interandean System is separated from the Eastern Cordillera by a thrust (principal interandean thrust of Roeder, 1988), which rises Proterozoic and Eopaleozoic sequences over the Subandean System (Ramos, 1999). The Labrado Hill, Zapla and Puesto Viejo ranges, located in the Interandean System, are brachianticlines with Paleozoic rock cores. The Ordovician (pre–Ocloyic) succession (Zanjón, Labrado, Capillas, and Centinela formations) consists of alternating sandstones and shales with calcareous subordinate levels (Harrington, 1957; Monaldi, 1986). The fossil record is usually scarce in these rocks. The Labrado and Capillas formations bear inarticulate brachiopods, conodonts, trilobites (Thysanopyge argentina), and trace fossils (Cruziana and Skolithos ichnofacies), which indicate an Arenig age. The Capillas Formation includes a more diverse fauna ("Brongniartella zaplensis", "Hoekaspis schlagintweiti", Ctenodonta sp., Lingula sp., nautiloids, and ichnites) that is referred to the Llanvirn. The Centinela Formation yields inarticulate brachiopods, trilobites ("Brongniartella zaplensis"), and skolithos (Monaldi et al., 1986). Post–Ocloyica deposits commence in the upper Ashgill (Hirnantian) and evolve during the Silurian and Devonian. They are bounded by the Chánica unconformity (Late Devonian – Early Carboniferous). The Hirnantian Zapla Formation (Schlagintweit, 1943) is made of clastic heterogeneous deposits with subordinate sandstones and shales, and scarce fossils. The record of Dalmanitina subandina allowed to referring this unit to the Hirnantian (Monaldi & Boso, 1987). The glacial or glaci–marine origin attributed to this formation is linked to the presence of striate and facet clasts (cf., Turner, 1964; Boso, 1999). Silurian deposits of the Lipeón Formation overlie Hirnantian or younger units.Fil: Ortega, Gladys del Carmen. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Moya, Maria Cristina. Universidad Catolica de Salta. Consejo de Investigaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Albanesi, Guillermo Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin

    The Purmamarca area, eastern cordillera, Jujuy province

    Get PDF
    The Purmamarca village is placed ca 50 km to northwest of Jujuy City, on the western side of the Quebrada de Humahuaca, Tumbaya Department, Jujuy Province (Figure 5). Within the general context of the Quebrada de Humahuaca, it is one of the most picturesque areas of the Argentina for tourism, and was recently declared by UNESCO cultural heritage of the humanity. From a geological point of view, it is a classical locality for the study of lower Paleozoic rocks of the Eastern Cordillera (e.g., Keidel, 1917; Kobayashi, 1936, 1937; Harrington, 1938; De Ferrariis, 1940; Harrington & Leanza, 1957; Ramos et al., 1967; Rao et al., 1994; Tortello, 1996; Tortello & Aceñolaza, 1999). Graywakes, quartzites and slates of the Puncoviscana Formation (Upper Precambrian – Lower Cambrian) constitute the basement of the Eastern Cordillera. Ichnofossils of Vendian/Tommotian age were recorded in this formation by Aceñolaza et al. (1999). These authors described the ichnogenusProtichnites from strata of the Puncoviscana Formation exposed at Purmamarca (Aceñolaza et al., 1999). The dominantly sandstone sequences of the Mesón Group (Lower Cambrian), unconformably overlie the Puncoviscana Formation (Tilcara unconformity) (Turner & Méndez, 1975; Moya, 1999). The Iruya unconformity (Turner, 1960) separates the successions of the Mesón Group from the Lower to Middle Ordovician Santa Victoria Group (Santa Rosita and Acoite formations) (Turner, 1960), and equivalent units.Fil: Ortega, Gladys del Carmen. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Albanesi, Guillermo Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Moya, Maria Cristina. Universidad Catolica de Salta. Consejo de Investigaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; Argentin

    The Mojotoro Range, eastern cordillera, Salta province

    Get PDF
    The Mojotoro Range (MR) is located at the SE end of the Argentine Eastern Cordillera, to the east of Salta City (Figure 7a,b). From a structural point of view, the MR is a complex anticlinorioum of N–S strike that closes to the north, at the latitude of San Antonio (Jujuy Province), and is cut to the south by the San Agustín fault (Salta Province) (Figure 7b). The anticline core is a clastic basement (late Proterozoic–Early Cambrian) with low grade metamorphism. This basement unconformably underlies (Tilcara unconformity) deposits of the Mesón Group and the Santa Victoria Group. The Salta Group (Cretaceous–Eocene) crops out in the southern end of the Mojotoro Range and lies over different Ordovician units. Deposits of the Oran Group (Tertiary, Neogene) are distributed near the eastern flank of the MR, and the contact of those deposits with the basement or cover rocks is always tectonic (Figures 7b). The Mojotoro Range is a typical structure of the Andean foreland, which is characterized by folding and overthrusts of eastern dip. The displacement took place by means of important reverse faults of N–S direction, affecting the basement and Palaeozoic cover on the eastern flank. The main thrust is located in the middle part of the MR section, where the eastern flank is inverted. There only appear post–Tremadocian deposits because of the faulting that suppressed the Mesón Group and Tremadocian units of the Santa Victoria Group. However, these deposits are well–represented on the western flank of Mojotoro Range. Another fault system of NO–SE direction transversally cuts the Mojotoro Range (Figure 7b), interrupting the lateral continuity of Palaeozoic rocks. They are left–handed faults, probably linked with the dynamics of El Toro Lineament. Two of these faults –Quebrada Honda and San Agustin (Figure 7b)– present evidences of pre–Cretaceous activity: a) It is supposed that the Quebrada Honda fault controlled the southern margin of the Cambrian basin, because deposits of the Mesón Group (only 17 m thick) lend out to the north of this fracture, and do not crop out to the south of it. b) It is verified that the San Agustín fault constitutes an erosive margin of the Ordovician basin (Moya, 1988a), which was worked previously to the deposits of Salta Group. Thick Ordovician deposits of the Mojotoro Range are abruptly interrupted against this fracture; toward the south, in the summits of Castillejo, the Salta Group covers the basement as well as few Ordovician tectonic sheetsFil: Moya, Maria Cristina. Universidad Nacional de Salta. Consejo de Investigacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Monteros, Julio A.. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Malanca, Susana. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Albanesi, Guillermo Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin

    Effect of β-Li3N phase, Li2O addition and thermal treatment on the hydrogen sorption behavior of Li3N

    Get PDF
    The hydriding of Li3N to LiNH2 is investigated to clarify the influence of the beta-Li3N phase, the addition of Li2O and the thermal treatment of Li3N on the hydrogen storage properties of the Li-N-H system. As-milled Li3N displays fast initial absorption that is attributed to the formation of beta-Li3N nanograins, the increase of the surface area, and the presence of surface defects induced by mechanical milling. However, further hydrogen absorption is retarded in comparison with the as-received sample due to the presence of the beta-Li3N phase formed during milling. Thus, commercial Li3N exhibits the highest hydrogen storage capacity in the first cycle in comparison with as-heated Li3N and as-milled samples. In the case of Li2O addition, no interaction with Li3N was detected. The addition of LiH to the commercial Li3N, as-milled Li3N and Li3N-Li2O influences only the stability of the samples under hydrogen cycling. The hydrogen absorption/desorption behavior is mainly controlled by the amount of beta-Li3N formed during milling, while at long times the microstructure has a minor effect.Fil: Fernández Albanesi, Luisa Francisca. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Arneodo Larochette, Pierre Paul. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    CO2 reutilization for methane production: Via a catalytic process promoted by hydrides

    Get PDF
    CO2 emissions have been continuously increasing during the last half of the century with a relevant impact on the planet and are the main contributor to the greenhouse effect and global warming. The development of new technologies to mitigate these emissions poses a challenge. Herein, the recycling of CO2 to produce CH4 selectively by using Mg2FeH6 and Mg2NiH4 complex hydrides as dual conversion promoters and hydrogen sources has been demonstrated. Magnesium-based metal hydrides containing Fe and Ni catalyzed the hydrogenation of CO2 and their total conversion was obtained at 400 °C after 5 h and 10 h, respectively. The complete hydrogenation of CO2 depended on the complex hydride, H2:CO2 mol ratio, and experimental conditions: temperature and time. For both hydrides, the activation of CO2 on the metal surface and its subsequent capture resulted in the formation of MgO. Investigations on the Mg2FeH6-CO2 system indicated that the main process occurs via the reversed water-gas shift reaction (WGSR), followed by the methanation of CO in the presence of steam. In contrast, the reduction of CO2 by the Mg-based hydride in the Mg2NiH4-CO2 system has a strong contribution to the global process. Complex metal hydrides are promising dual promoter-hydrogen sources for CO2 recycling and conversion into valuable fuels such as CH4.Fil: Grasso, María Laura. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada CAB. Departamento Fisicoquímica de Materiales; Argentina. Universidad Nacional de Cuyo; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Puszkiel, Julián Atilio. Helmholtz zentrum Geesthacht; Alemania. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada CAB. Departamento Fisicoquímica de Materiales; Argentina. Universidad Nacional de Cuyo; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Fernández Albanesi, Luisa Francisca. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada CAB. Departamento Fisicoquímica de Materiales; Argentina. Universidad Nacional de Cuyo; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Dornheim, Martin. Helmholtz zentrum Geesthacht; AlemaniaFil: Pistidda, Claudio. Helmholtz zentrum Geesthacht; AlemaniaFil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Gerencia de Área de Aplicaciones de la Tecnología Nuclear. Gerencia de Investigación Aplicada CAB. Departamento Fisicoquímica de Materiales; Argentina. Universidad Nacional de Cuyo; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    The Angosto del Moreno area, Eastern Cordillera, Jujuy province

    Get PDF
    Ordovician and Silurian rocks exposed in the western belt of the Eastern Cordillera of Jujuy Province will be discussed during the journey through the provincial road 16, which connects the Purmamarca Village with the Angosto del Moreno locality. Following stops refer to diverse geological aspects of the region.Fil: Moya, Maria Cristina. Universidad Nacional de Salta. Consejo de Investigacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Malanca, Susana. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Monteros, Julio A.. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Albanesi, Guillermo Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ortega, Gladys del Carmen. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Buatois, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; Argentin

    Paleoenvironmental and sequence stratigraphic framework of the Cambrian–Ordovician transition in the Angosto del Moreno area, Northwest Argentina

    Get PDF
    The Cambrian–Ordovician transition has been the focus of a series of biostratigraphic studies in Northwest Argentina (e.g., Benedetto, 1977; Aceñolaza, 1983; Aceñolaza and Aceñolaza, 1992; Rao and Hunicken, 1995; Tortello and Aceñolaza, 1999). However, there is a remarkable absence of detailed stratigraphic sections and only a few studies deal with the associated sedimentary facies and the sequence stratigraphic framework of the Cambrian–Ordovician successions (Moya, 1998; Buatois and Mángano, in press). This has historically precluded a more accurate biostratigraphic zonation and placing of the Cambrian–Ordovician boundary. The aim of this paper is, therefore, to provide a paleoenvironmental and sequence stratigraphic framework for the Cambrian–Tremadocian succession exposed at the Angosto del Moreno area, in the southwest region of the Eastern Cordillera, Jujuy Province. Although this paper is focused on this particular section, information from other areas in Eastern Cordillera has been used for the recognition of allostratigraphic surfaces and stratal stacking patterns. We emphasize that integrated paleontologic (body and trace fossils), sedimentologic and sequence stratigraphic studies are essential in biostratigraphy. Paleontological data and biostratigraphic analysis is presented in Moya et al. (this volume).Fil: Buatois, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; ArgentinaFil: Moya, Maria Cristina. Universidad Nacional de Salta. Facultad de Ciencias Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Mangano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; ArgentinaFil: Malanca, Susana. Universidad Nacional de Salta. Facultad de Ciencias Naturales; ArgentinaFil: Albanesi, Guillermo Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ortega, Gladys del Carmen. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin

    Late Cambrian – Tremadocian faunas and events from Angosto del Moreno Section, Eastern Cordillera, Argentina

    Get PDF
    The Santa Victoria Group (SVG, late Upper Cambrian – Caradocian) comprises pre–Ashgillian Ordovician deposits of the Argentinean Eastern Cordillera. The most significant section of the SVG in the western flank of the Eastern Cordillera is located in the Angosto del Moreno area (Figure 1a, b). At this locality, the SVG unconformably overlies the Mesón Group (Cambrian s.l.), and unconformably underlies Cretaceous rocks (Yacoraite Formation). Upper Cambrian to lower Lower Ordovician units are separated from upper Lower to Middle Ordovician units (Parcha and Sepulturas formations) by the Tumbaya unconformity (Figure 2). The Angosto del Moreno Section of the SVG is exceptional in terms of the quality of exposures, continuity of deposits, richness of fossils, and accessibility. Diverse aspects concerning the Ordovician geology of this study area have been discussed by Moya et al. (1994, 1998), Moya and Albanesi (2000), Moya and Monteros (2000), Malanca and Brandán (2000), and Gómez Martínez et al. (2002). Previous data and recent paleontological collections enable a preliminary biostratigraphic scheme (Figure 2) for the Upper Cambrian to Tremadocian units of the SVG. A synthesis of the sequence stratigraphy and depositional environments of these units is given by Buatois et al. (this volume).Fil: Moya, Maria Cristina. Universidad Nacional de Salta. Consejo de Investigacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Malanca, Susana. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Monteros, Julio A.. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Albanesi, Guillermo Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ortega, Gladys del Carmen. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Buatois, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; Argentin

    Reconocimiento de objetos en video utilizando SIFT paralelo

    Get PDF
    El reconocimiento de objetos en video es una tarea computacionalmente costosa y de sumo interés en distintas áreas. Existen métodos que permiten caracterizar una imagen a través de la representación vectorial de sus pixels más relevantes entre los cuales SIFT es uno de los más utilizados. Este artículo propone una implementación paralela de este método con el objetivo de realizar tracking de video. Se trata de una solución de grano grueso sobre una arquitectura multicore que permite llegar a un rendimiento cercano al óptimo al usar un esquema Bag of Task para balancear el trabajo. Se logra incrementar la cantidad de frames resueltos por segundo para el procesamiento de video en Tiempo Real.Presentado en el VIII Workshop Computación Gráfica, Imágenes y Visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI

    Reconocimiento de objetos en video utilizando SIFT paralelo

    Get PDF
    El reconocimiento de objetos en video es una tarea computacionalmente costosa y de sumo interés en distintas áreas. Existen métodos que permiten caracterizar una imagen a través de la representación vectorial de sus pixels más relevantes entre los cuales SIFT es uno de los más utilizados. Este artículo propone una implementación paralela de este método con el objetivo de realizar tracking de video. Se trata de una solución de grano grueso sobre una arquitectura multicore que permite llegar a un rendimiento cercano al óptimo al usar un esquema Bag of Task para balancear el trabajo. Se logra incrementar la cantidad de frames resueltos por segundo para el procesamiento de video en Tiempo Real.Presentado en el VIII Workshop Computación Gráfica, Imágenes y Visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI
    corecore