48 research outputs found

    The spin glass-antiferromagnetism competition in Kondo-lattice systems in the presence of a transverse applied magnetic field

    Full text link
    A theory is proposed to describe the competition among antiferromagnetism (AF), spin glass (SG) and Kondo effect. The model describes two Kondo sublattices with an intrasite Kondo interaction strength JKJ_{K} and a random Gaussian interlattice interaction in the presence of a transverse field Γ\Gamma. The Γ\Gamma field is introduced as a quantum mechanism to produce spin flipping and the random coupling has average −2J0/N-2J_0/N and variance 32J2/N32 J^{2}/N. The path integral formalism with Grassmann fields is used to study this fermionic problem, in which the disorder is treated within the framework of the replica trick. The free energy and the order parameters are obtained using the static ansatz. In this many parameters problem, we choose J0/J≈(JK/J)2J_0/J \approx (J_{K}/J)^{2} and Γ/J≈(JK/J)2\Gamma/J \approx (J_{K}/J)^{2} to allow a better comparison with the experimental findings. The obtained phase diagram has not only the same sequence as the experimental one for Ce2Au1−xCoxSi3Ce_{2}Au_{1-x}Co_{x}Si_{3}, but mainly, it also shows a qualitative agreement concerning the behavior of the freezing temperature and the Neel temperature which decreases until a Quantum Critical Point (QCP).Comment: 4 pages, 1 figure, accepted for publication in Physica

    Fermionic Ising Glasses with BCS Pairing Interaction. Tricritical Behaviour

    Full text link
    We have examined the role of the BCS pairing mechanism in the formation of the magnetic moment and henceforth a spin glass (SG) phase by studying a fermionic Sherrington-Kirkpatrick model with a local BCS coupling between the fermions. This model is obtained by using perturbation theory to trace out the conduction electrons degrees of freedom in conventional superconducting alloys. The model is formulated in the path integral formalism where the spin operators are represented by bilinear combinations of Grassmann fields and it reduces to a single site problem that can be solved within the static approximation with a replica symmetric Ansatz. We argue that this is a valid procedure for values of temperature above the de Almeida-Thouless instability line. The phase diagram in the T-g plane, where g is the strength of the pairing interaction, for fixed variance J^2/N of the random couplings J_{ij}, exhibits three regions: a normal paramagnetic (NP) phase, a spin glass (SG) phase and a pairing (PAIR) phase where there is formation of local pairs.The NP and PAIR phases are separated by a second order transition line g=g_{c}(T) that ends at a tricritical point T_{3}=0.9807J, g_{3}=5,8843J, from where it becomes a first order transition line that meets the line of second order transitions at T_{c}=0.9570J that separates the NP and the SG phases. For T<T_{c} the SG phase is separated from the PAIR phase by a line of first order transitions. These results agree qualitatively with experimental data in Gd_{x}Th_{1-x}RU_{2}.Comment: 26 pages, 5 figures, to appear in The European Physical Journal

    Spin glass freezing in Kondo lattice compounds

    Get PDF
    It is presented a theory that describes a spin glass phase at finite temperatures in Kondo lattice systems with an additional RKKY interaction represented by long range, random couplings among localized spins like in the Sherrington- Kirkpatrick (SK) spin glass model. The problem is studied within the functional integral formalism where the spin operators are represented by bilinear combinations of fermionic (anticommuting) Grassmann variables. The Kondo and spin glass transitions are both described with the mean field like static ansatz that reproduces good results in the two well known limits. At high temperatures and low values of the Kondo coupling there is a paramagnetic (disordered) phase with vanishing Kondo and spin glass order parameters. By lowering the temperature a second order transition line is found at Tsg to a spin glass phase. For larger values of the Kondo coupling there is a second order transition line at roughly Tk to a Kondo ordered state. For T<Tsg the transition between the Kondo and spin glass phases becomes first order.Comment: 21 pages, 1 figure, to appear on Phys. Rev.

    Spin Glass and antiferromagnetism in Kondo lattice disordered systems

    Full text link
    The competition between spin glass (SG), antiferromagnetism (AF) and Kondo effect is studied here in a model which consists of two Kondo sublattices with a gaussian random interaction between spins in differents sublattices with an antiferromagnetic mean Jo and standard deviation J. In the present approach there is no hopping of the conduction electrons between the sublattices and only spins in different sublattices can interact. The problem is formulated in the path integral formalism where the spin operators are expressed as bilinear combinations of Grassmann fields which can be solved at mean field level within the static approximation and the replica symmetry ansatz. The obtained phase diagram shows the sequence of phases SG, AF and Kondo state for increasing Kondo coupling. This sequence agrees qualitatively with experimental data of the Ce_{2} Au_{1-x} Co_{x} Si_{3} compound.Comment: 7 pages, 1 figure, submitted to EPJ

    Spin Glass and ferromagnetism in disordered Kondo lattice

    Full text link
    The competition among spin glass (SG), ferromagnetism and Kondo effect has been analysed in a Kondo lattice model where the inter-site coupling JijJ_{ij} between the localized magnetic moments is given by a generalized Mattis model \cite{Mattis} which represents an interpolation between ferromagnetism and a highly disordered spin glass. Functional integral techniques with of Grassmann fields has been used to obtain the partition function. The static approximation and the replica symmetric ansatz has also been used. The solution of the problem is presented as a phase diagram temperature TT {\it versus} JKJ_K (the strength of the intra-site interaction). If JKJ_K is small, for decreasing temperature there is a second order transition from a paramagnetic to a spin glass phase For lower temperatures, a first order transition appears where solutions for the spin glass order parameter and the local magnetizations are simultaneously non zero. For very low temperatures, the local magnetizations becomes thermodinamically stables. For high JKJ_K, the Kondo state is dominating. These results could be helpful to clarify the experimental situation of CeNi1−xCuxCeNi_{1-x}Cu_{x}.Comment: 4 pages, 1 figure, accept to be published in Physica

    Role of the transverse field in inverse freezing in the fermionic Ising spin-glass model

    Full text link
    We investigate the inverse freezing in the fermionic Ising spin-glass (FISG) model in a transverse field Γ\Gamma. The grand canonical potential is calculated in the static approximation, replica symmetry and one-step replica symmetry breaking Parisi scheme. It is argued that the average occupation per site nn is strongly affected by Γ\Gamma. As consequence, the boundary phase is modified and, therefore, the reentrance associated with the inverse freezing is modified too.Comment: 6 pages, 3 figures, accepted for publication in PR

    Spin Glass and Ferromagnetism in Kondo lattices compounds

    Full text link
    The Kondo lattice model has been analyzed in the presence of a random inter-site interaction among localized spins with non zero mean Jo and standard deviation J. Following the same framework previously introduced by us, the problem is formulated in the path integral formalism where the spin operators are expressed as bilinear combinations of Grassmann fields. The static approximation and the replica symmetry ansatz have allowed us to solve the problem at a mean field level. The resulting phase diagram displays several phase transitions among a ferromagnetically ordered region,a spin glass one, a mixed phase and a Kondo state depending on Jo, J and its relation with the Kondo interaction coupling Jk. These results could be used to address part of the experimental data for the CeNi_{1-x}Cu_x compound, when x =< 0.8.Comment: 7 pages, 2 figures. accepted for publication in The European Physical Journal

    Quantum Critical Point in the Spin Glass-Kondo Transition in Heavy Fermion Systems

    Full text link
    The Kondo-Spin Glass competition is studied in a theoretical model of a Kondo lattice with an intra-site Kondo type exchange interaction treated within the mean field approximation, an inter-site quantum Ising exchange interaction with random couplings among localized spins and an additional transverse field in the x direction, which represents a simple quantum mechanism of spin flipping. We obtain two second order transition lines from the spin-glass state to the paramagnetic one and then to the Kondo state. For a reasonable set of the different parameters, the two second order transition lines do not intersect and end in two distinct QCP.Comment: 20 pages; 1 figure; to appear in Physical Review
    corecore