508 research outputs found

    ‘Advocacy groups are the connectors’: Experiences and contributions of rare disease patient organization leaders in advanced neurotherapeutics

    Get PDF
    Introduction: Biomedical progress has facilitated breakthrough advanced neurotherapeutic interventions, whose potential to improve outcomes in rare neurological diseases has increased hope among people with lived experiences and their carers. Nevertheless, gene, somatic cell and other advanced neurotherapeutic interventions carry significant risks. Rare disease patient organizations (RDPOs) may enhance patient experiences, inform expectations and promote health literacy. However, their perspectives are understudied in paediatric neurology. If advanced neurotherapeutics is to optimize RDPO contributions, it demands further insights into their roles, interactions and support needs. Methods: We used a mixed-methodology approach, interviewing 20 RDPO leaders representing paediatric rare neurological diseases and following them up with two online surveys featuring closed and open-ended questions on advanced neurotherapeutics (19/20) and negative mood states (17/20). Qualitative and quantitative data were analysed using thematic discourse analysis and basic descriptive statistics, respectively. Results: Leaders perceived their roles to be targeted at educational provision (20/20), community preparation for advanced neurotherapeutic clinical trials (19/20), information simplification (19/20) and focused research pursuits (20/20). Although most leaders perceived the benefits of collaboration between stakeholders, some cited challenges around collaborative engagement under the following subthemes: conflicts of interest, competition and logistical difficulties. Regarding neurotherapeutics, RDPO leaders identified support needs centred on information provision, valuing access to clinician experts and highlighting a demand for co-developed, centralized, high-level and understandable, resources that may improve information exchange. Leaders perceived a need for psychosocial support within themselves and their communities, proposing that this would facilitate informed decision-making, reduce associated psychological vulnerabilities and maintain hope throughout neurotherapeutic development. Conclusion: This study provides insights into RDPO research activities, interactions and resource needs. It reveals a demand for collaboration guidelines, central information resources and psychosocial supports that may address unmet needs and assist RDPOs in their advocacy. Patient or Public Contribution: In this study, RDPO leaders were interviewed and surveyed to examine their perspectives and roles in advanced neurotherapeutic development. Some participants sent researchers postinterview clarification emails regarding their responses to questions

    Positivity, entanglement entropy, and minimal surfaces

    Full text link
    The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n→1n\rightarrow 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n−1n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT.Comment: 36 pages, 10 figures. Changes in presentation and discussion of Wilson loops. Conclusions regarding entanglement entropy unchange

    Exhaustive assignment of compositional bias reveals universally prevalent biased regions: analysis of functional associations in human and Drosophila

    Get PDF
    BACKGROUND: Compositionally biased (CB) regions are stretches in protein sequences made from mainly a distinct subset of amino acid residues; such regions are frequently associated with a structural role in the cell, or with protein disorder. RESULTS: We derived a procedure for the exhaustive assignment and classification of CB regions, and have applied it to thirteen metazoan proteomes. Sequences are initially scanned for the lowest-probability subsequences (LPSs) for single amino-acid types; subsequently, an exhaustive search for lowest probability subsequences (LPSs) for multiple residue types is performed iteratively until convergence, to define CB region boundaries. We analysed > 40,000 CB regions with > 20 million residues; strikingly, nine single-/double- residue biases are universally abundant, and are consistently highly ranked across both vertebrates and invertebrates. To home in subpopulations of CB regions of interest in human and D. melanogaster, we analysed CB region lengths, conservation, inferred functional categories and predicted protein disorder, and filtered for coiled coils and protein structures. In particular, we found that some of the universally abundant CB regions have significant associations to transcription and nuclear localization in Human and Drosophila, and are also predicted to be moderately or highly disordered. Focussing on Q-based biased regions, we found that these regions are typically only well conserved within mammals (appearing in 60–80% of orthologs), with shorter human transcription-related CB regions being unconserved outside of mammals; they are also preferentially linked to protein domains such as the homeodomain and glucocorticoid-receptor DNA-binding domain. In general, only ~40–50% of residues in these human and Drosophila CB regions have predicted protein disorder. CONCLUSION: This data is of use for the further functional characterization of genes, and for structural genomics initiatives

    The relevance of coagulation factor X protection of adenoviruses in human sera

    Get PDF
    Intravenous delivery of adenoviruses is the optimal route for many gene therapy applications. Once in the blood, coagulation factor X (FX) binds to the adenovirus capsid and protects the virion from natural antibody and classical complement-mediated neutralisation in mice. However, to date, no studies have examined the relevance of this FX/viral immune protective mechanism in human samples. In this study, we assessed the effects of blocking FX on adenovirus type 5 (Ad5) activity in the presence of human serum. FX prevented human IgM binding directly to the virus. In individual human sera samples (n=25), approximately half of those screened inhibited adenovirus transduction only when the Ad5–FX interaction was blocked, demonstrating that FX protected the virus from neutralising components in a large proportion of human sera. In contrast, the remainder of sera tested had no inhibitory effects on Ad5 transduction and FX armament was not required for effective gene transfer. In human sera in which FX had a protective role, Ad5 induced lower levels of complement activation in the presence of FX. We therefore demonstrate for the first time the importance of Ad–FX protection in human samples and highlight subject variability and species-specific differences as key considerations for adenoviral gene therapy
    • 

    corecore