1,298 research outputs found

    Las investigaciones corporales en el proceso penal español

    Get PDF
    El presente trabajo de investigación tiene por finalidad examinar las inspecciones, registros e intervenciones corporales en el proceso penal español. Todos estos actos de investigación tienen en común que se practican directamente sobre las personas y el cuerpo humano. Por lo que, la práctica de los mismos puede suponer una limitación de algunos derechos fundamentales. El problema fundamental es la ausencia de regulación sobre los aspectos esenciales de estos actos, y ello provoca problemas de relevancia jurídica con relación a su determinación, sus presupuestos, a los sujetos, a su ejecución, a la posibilidad del empleo de la fuerza física o coactiva, etcétera. Por lo tanto, y como consecuencia de esta laguna jurídica, con este trabajo se pretende llevar a cabo un análisis de la doctrina y de la jurisprudencia que proporcione una respuesta lo más adecuada posible a todas estas cuestiones que se irán exponiendo a lo largo del mismo.The present research aims to examine inspections, searches and bodily interventions in the Spanish criminal process. All these acts of investigation have in common that they are practiced directly on people and the human body. Therefore, the practice of these acts may imply a limitation of some fundamental rights. The fundamental problem is the absence of regulation on the essential aspects of these acts, and this causes problems of legal relevance in relation to their determination, their assumptions, the subjects, their execution, the possibility of the use of physical or coercive force, etc. Therefore, and as a consequence of this legal gap, this work aims to carry out an analysis of the doctrine and jurisprudence that will provide the most appropriate response possible to all these issues that will be exposed throughout this work

    Sound-Absorption Properties of Materials Made of Esparto Grass Fibers

    Full text link
    [EN] Research on sound-absorbing materials made of natural fibers is an emerging area in sustainable materials. In this communication, the use of raw esparto grass as an environmentally friendly sound-absorbing material is explored. Measurements of the normal-incidence sound-absorption coefficient and airflow resistivity of three different types of esparto from different countries are presented. In addition, the best-fit coefficients for reasonable prediction of the sound-absorption performance by means of simple empirical formulae are reported. These formulae require only knowledge of the airflow resistivity of the fibrous material. The results presented in this paper are an addition to the characterization of available natural fibers to be used as alternatives to synthetic ones in the manufacturing of sound-absorbing materials.This research was funded by CONICYT-FONDECYT, grant number 1171110.Arenas, JP.; Rey Tormos, RMD.; Alba, J.; Oltra, R. (2020). Sound-Absorption Properties of Materials Made of Esparto Grass Fibers. Sustainability. 12(14):1-10. https://doi.org/10.3390/su12145533S1101214Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552-1596. doi:10.1016/j.progpolymsci.2012.04.003Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112. doi:10.1016/j.compositesa.2015.08.038Asdrubali, F., Schiavoni, S., & Horoshenkov, K. V. (2012). A Review of Sustainable Materials for Acoustic Applications. Building Acoustics, 19(4), 283-311. doi:10.1260/1351-010x.19.4.283Berardi, U., & Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94, 840-852. doi:10.1016/j.buildenv.2015.05.029Koruk, H., & Genc, G. (2015). Investigation of the acoustic properties of bio luffa fiber and composite materials. Materials Letters, 157, 166-168. doi:10.1016/j.matlet.2015.05.071Ersoy, S., & Küçük, H. (2009). Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Applied Acoustics, 70(1), 215-220. doi:10.1016/j.apacoust.2007.12.005Hosseini Fouladi, M., Nor, M. J. M., Ayub, M., & Leman, Z. A. (2010). Utilization of coir fiber in multilayer acoustic absorption panel. Applied Acoustics, 71(3), 241-249. doi:10.1016/j.apacoust.2009.09.003Hosseini Fouladi, M., Ayub, M., & Jailani Mohd Nor, M. (2011). Analysis of coir fiber acoustical characteristics. Applied Acoustics, 72(1), 35-42. doi:10.1016/j.apacoust.2010.09.007Ramis, J., Del Rey, R., Alba, J., Godinho, L., & Carbajo, J. (2014). A model for acoustic absorbent materials derived from coconut fiber. Materiales de Construcción, 64(313), e008. doi:10.3989/mc.2014.00513Oldham, D. J., Egan, C. A., & Cookson, R. D. (2011). Sustainable acoustic absorbers from the biomass. Applied Acoustics, 72(6), 350-363. doi:10.1016/j.apacoust.2010.12.009Yang, W., & Li, Y. (2012). Sound absorption performance of natural fibers and their composites. Science China Technological Sciences, 55(8), 2278-2283. doi:10.1007/s11431-012-4943-1Tang, X., Zhang, X., Zhang, H., Zhuang, X., & Yan, X. (2018). Corn husk for noise reduction: Robust acoustic absorption and reduced thickness. Applied Acoustics, 134, 60-68. doi:10.1016/j.apacoust.2018.01.012Berardi, U., Iannace, G., & Di Gabriele, M. (2017). The Acoustic Characterization of Broom Fibers. Journal of Natural Fibers, 14(6), 858-863. doi:10.1080/15440478.2017.1279995Lim, Z. Y., Putra, A., Nor, M. J. M., & Yaakob, M. Y. (2018). Sound absorption performance of natural kenaf fibres. Applied Acoustics, 130, 107-114. doi:10.1016/j.apacoust.2017.09.012Malawade, U. A., & Jadhav, M. G. (2020). Investigation of the Acoustic Performance of Bagasse. Journal of Materials Research and Technology, 9(1), 882-889. doi:10.1016/j.jmrt.2019.11.028Gomez, T. S., Navacerrada, M. A., Díaz, C., & Fernández-Morales, P. (2020). Fique fibres as a sustainable material for thermoacoustic conditioning. Applied Acoustics, 164, 107240. doi:10.1016/j.apacoust.2020.107240Othmani, C., Taktak, M., Zein, A., Hentati, T., Elnady, T., Fakhfakh, T., & Haddar, M. (2016). Experimental and theoretical investigation of the acoustic performance of sugarcane wastes based material. Applied Acoustics, 109, 90-96. doi:10.1016/j.apacoust.2016.02.005Or, K. H., Putra, A., & Selamat, M. Z. (2017). Oil palm empty fruit bunch fibres as sustainable acoustic absorber. Applied Acoustics, 119, 9-16. doi:10.1016/j.apacoust.2016.12.002Taban, E., Khavanin, A., Faridan, M., Samaei, S. E., Samimi, K., & Rashidi, R. (2019). Comparison of acoustic absorption characteristics of coir and date palm fibers: experimental and analytical study of green composites. International Journal of Environmental Science and Technology, 17(1), 39-48. doi:10.1007/s13762-019-02304-8Putra, A., Or, K. H., Selamat, M. Z., Nor, M. J. M., Hassan, M. H., & Prasetiyo, I. (2018). Sound absorption of extracted pineapple-leaf fibres. Applied Acoustics, 136, 9-15. doi:10.1016/j.apacoust.2018.01.029Yun, B. Y., Cho, H. M., Kim, Y. U., Lee, S. C., Berardi, U., & Kim, S. (2020). Circular reutilization of coffee waste for sound absorbing panels: A perspective on material recycling. Environmental Research, 184, 109281. doi:10.1016/j.envres.2020.109281Zhang, J., Shen, Y., Jiang, B., & Li, Y. (2018). Sound Absorption Characterization of Natural Materials and Sandwich Structure Composites. Aerospace, 5(3), 75. doi:10.3390/aerospace5030075Kusno, A., Sakagami, K., Okuzono, T., Toyoda, M., Otsuru, T., Mulyadi, R., & Kamil, K. (2019). A Pilot Study on the Sound Absorption Characteristics of Chicken Feathers as an Alternative Sustainable Acoustical Material. Sustainability, 11(5), 1476. doi:10.3390/su11051476Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9Berardi, U., & Iannace, G. (2017). Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Applied Acoustics, 115, 131-138. doi:10.1016/j.apacoust.2016.08.012Miki, Y. (1990). Acoustical properties of porous materials. Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E), 11(1), 19-24. doi:10.1250/ast.11.19Attenborough, K. (1982). Acoustical characteristics of porous materials. Physics Reports, 82(3), 179-227. doi:10.1016/0370-1573(82)90131-4Dunn, I. P., & Davern, W. A. (1986). Calculation of acoustic impedance of multi-layer absorbers. Applied Acoustics, 19(5), 321-334. doi:10.1016/0003-682x(86)90044-7Garai, M., & Pompoli, F. (2005). A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics, 66(12), 1383-1398. doi:10.1016/j.apacoust.2005.04.008Rey, R. del, Alba, J., Arenas, J. P., & Sanchis, V. J. (2012). An empirical modelling of porous sound absorbing materials made of recycled foam. Applied Acoustics, 73(6-7), 604-609. doi:10.1016/j.apacoust.2011.12.009Arenas, J. P., Rebolledo, J., Del Rey, R., & Alba, J. (2014). Sound Absorption Properties of Unbleached Cellulose Loose-Fill Insulation Material. BioResources, 9(4). doi:10.15376/biores.9.4.6227-6240Silva, C. C. B. da, Terashima, F. J. H., Barbieri, N., & Lima, K. F. de. (2019). Sound absorption coefficient assessment of sisal, coconut husk and sugar cane fibers for low frequencies based on three different methods. Applied Acoustics, 156, 92-100. doi:10.1016/j.apacoust.2019.07.001Sair, S., Mansouri, S., Tanane, O., Abboud, Y., & El Bouari, A. (2019). Alfa fiber-polyurethane composite as a thermal and acoustic insulation material for building applications. SN Applied Sciences, 1(7). doi:10.1007/s42452-019-0685-zMaghchiche, A., Haouam, A., & Immirzi, B. (2013). Extraction and Characterization of Algerian Alfa Grass Short Fibers (Stipa Tenacissima). Chemistry & Chemical Technology, 7(3), 339-344. doi:10.23939/chcht07.03.339Nadji, H., Diouf, P. N., Benaboura, A., Bedard, Y., Riedl, B., & Stevanovic, T. (2009). Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.). Bioresource Technology, 100(14), 3585-3592. doi:10.1016/j.biortech.2009.01.074Belkhir, S., Koubaa, A., Khadhri, A., Ksontini, M., & Smiti, S. (2012). Variations in the morphological characteristics of Stipa tenacissima fiber: The case of Tunisia. Industrial Crops and Products, 37(1), 200-206. doi:10.1016/j.indcrop.2011.11.021Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9Rey, R. del, Alba, J., Arenas, J. P., & Ramis, J. (2013). Technical Notes: Evaluation of Two Alternative Procedures for Measuring Airflow Resistance of Sound Absorbing Materials. Archives of Acoustics, 38(4), 547-554. doi:10.2478/aoa-2013-0064Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. doi:10.1093/comjnl/7.4.308Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization, 9(1), 112-147. doi:10.1137/s105262349630347

    Analysis of Ascorbate Peroxidase Genes Expressed in Resistant and Susceptible Wheat Lines Infected by Heterodera avenae.

    Full text link
    Changes in ascorbate peroxidase (APX) enzyme activity in response to nematode (Heterodera avenae) attack were studied in roots of three hexaploid wheat lines carrying Cre2, Cre5, or Cre7 nematode resistance genes and the susceptible Triticum aestivum cv. Anza. A spectrophotometric analysis was carried out with root extracts of infected plants 4, 7, 11, and 14 days after nematode inoculation using uninfected plant as control. APX induction in infected resistant genotypes was similar and higher than in the susceptible control. The introgression wheat/Aegilops ventricosa H-93-8 line, carrying the Cre2 gene, and its parental line H-10-15 as susceptible control were used to analyze whether this increase of activity was correlated with the induction of APX gene expression. Genes encoding cytosolic forms of APX were induced in roots of both lines in response to nematode infection. This induction took place both earlier and with greater intensity in the resistant line than in the susceptible one, and it was also higher in the root area at the site of nematode attachment

    Role of wide bandgap materials in power electronics for smart grids applications

    Get PDF
    At present, the energy transition is leading to the replacement of large thermal power plants by distributed renewable generation and the introduction of different assets. Consequently, a massive deployment of power electronics is expected. A particular case will be the devices destined for urban environments and smart grids. Indeed, such applications have some features that make wide bandgap (WBG) materials particularly relevant. This paper analyzes the most important features expected by future smart applications from which the characteristics that their power semiconductors must perform can be deduced. Following, not only the characteristics and theoretical limits of wide bandgap materials already available on the market (SiC and GaN) have been analyzed, but also those currently being researched as promising future alternatives (Ga2O3, AlN, etc.). Finally, wide bandgap materials are compared under the needs determined by the smart applications, determining the best suited to them. We conclude that, although SiC and GaN are currently the only WBG materials available on the semiconductor portfolio, they may be displaced by others such as Ga2O3 in the near futur

    An electroacoustic method for measuring airflow resistivity of porous sound-absorbing materials

    Full text link
    [EN] In this paper, a method for measuring the airflow resistivity of air-saturated porous sound-absorbing materials is presented. The method is based on a modification of the previous device developed by Dragonetti et al. The approach used in the present work involves a cavity and a Helmholtz resonator that are coupled through a loudspeaker so that the complete system behaves as a fourth-order symmetrical band-pass loudspeaker system. After a straightforward calibration, the airflow resistivity of a material sample is indirectly estimated from the direct measurement of the total electric impedance at the loudspeaker connection terminals. In this way, the use of microphones is not necessary, which makes its implementation very simple and inexpensive. Experimental results obtained with the present method agree well with those obtained through a standardized method as long as the values of the material's airflow resistance are not too high. (C) 2019 Elsevier Ltd. All rights reserved.The authors would like to gratefully acknowledge the support of CONICYT-FONDECYT under Grant 1171110 and to the Vicerectorate of R+i+t at Univ. Politecnica of Valencia, Grant PAID0017.Alba, J.; Arenas, JP.; Rey Tormos, RMD.; Rodríguez-Vercher, J. (2019). An electroacoustic method for measuring airflow resistivity of porous sound-absorbing materials. Applied Acoustics. 150:132-137. https://doi.org/10.1016/j.apacoust.2019.02.009S13213715

    Medical image modality classification using discrete Bayesian Networks

    Get PDF
    In this paper we propose a complete pipeline for medical image modality classification focused on the application of discrete Bayesian network classifiers. Modality refers to the categorization of biomedical images from the literature according to a previously defined set of image types, such as X-ray, graph or gene sequence. We describe an extensive pipeline starting with feature extraction from images, data combination, pre-processing and a range of different classification techniques and models. We study the expressive power of several image descriptors along with supervised discretization and feature selection to show the performance of discrete Bayesian networks compared to the usual deterministic classifiers used in image classification. We perform an exhaustive experimentation by using the ImageCLEFmed 2013 collection. This problem presents a high number of classes so we propose several hierarchical approaches. In a first set of experiments we evaluate a wide range of parameters for our pipeline along with several classification models. Finally, we perform a comparison by setting up the competition environment between our selected approaches and the best ones of the original competition. Results show that the Bayesian Network classifiers obtain very competitive results. Furthermore, the proposed approach is stable and it can be applied to other problems that present inherent hierarchical structures of classes

    Discursos interpretativos y prácticas deliberativas: Propuesta metodológica para formulación de políticas públicas sanitarias en Colombia

    Get PDF
    Objetivo Formular políticas públicas sanitarias en escenarios de gobernanza local mediante la participación comunitaria, requiere reconocer la interacción de todos los actores sociales mediante enfoques argumentativos.Métodos A partir de un enfoque hermenéutico crítico, se utilizó un método retórico argumentativo para la formulación política desde un escenario socio céntrico, a partir de un diálogo de saberes entre la comunidad e instituciones locales, que permitieron identificar y comprender problemáticas sociales relevantes en salud, relacionadas con primera infancia y familia.Resultados Se construyó una política pública integral armonizada con programas sociales en salud existentes, para intervenir aspectos en referencia a la primera infancia, infancia, adolescencia y familia, donde las soluciones y su implementación parten de un núcleo participativo que trasmuta lo existente hacia algo inherente a la comunidad.Conclusiones El enfoque argumentativo en las políticas públicas reconoce el núcleo dialéctico de la política acercando la comunidad a los entes gubernamentales mediante la participación ciudadana activa en procesos de identificación, implementación y puesta en marcha de políticas sociales.Objective To propose public health policies in local governance scenarios through community participation; this requires recognizing the interaction of all social actors through argumentative approaches.Methods Considering a critical hermeneutic approach, an argumentative rhetorical method was used to conduct a political formulation from a socio-centric scenario, based on a dialogue of knowledge between the community and local institutions, which allowed to identify and understand relevant social problems in health, related with early childhood and family.Results A comprehensive public policy was built in accordance with existing social health programs to intervene aspects referring to early childhood, childhood, adolescence and family. Solutions and their implementation arise from a participatory nucleus that reconciles institutional political interests and social needs of the local community.Conclusions The argumentative approach in public policies recognizes the dialectical nucleus of politics by bringing the community closer to government entities through active citizen participation in processes of identification, implementation and execution of social policies

    Effect of Dietary Coenzyme Q10 Plus NADH Supplementation on Fatigue Perception and Health-Related Quality of Life in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial

    Get PDF
    Coenzima Q10; Mitocondrias; Encefalomielitis miálgicaCoenzyme Q10; Mitochondria; Myalgic encephalomyelitisCoenzim Q10; Mitocondris; Encefalomielitis miàlgicaMyalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, multisystem, and profoundly debilitating neuroimmune disease, probably of post-viral multifactorial etiology. Unfortunately, no accurate diagnostic or laboratory tests have been established, nor are any universally effective approved drugs currently available for its treatment. This study aimed to examine whether oral coenzyme Q10 and NADH (reduced form of nicotinamide adenine dinucleotide) co-supplementation could improve perceived fatigue, unrefreshing sleep, and health-related quality of life in ME/CFS patients. A 12-week prospective, randomized, double-blind, placebo-controlled trial was conducted in 207 patients with ME/CFS, who were randomly allocated to one of two groups to receive either 200 mg of CoQ10 and 20 mg of NADH (n = 104) or matching placebo (n = 103) once daily. Endpoints were simultaneously evaluated at baseline, and then reassessed at 4- and 8-week treatment visits and four weeks after treatment cessation, using validated patient-reported outcome measures. A significant reduction in cognitive fatigue perception and overall FIS-40 score (p < 0.001 and p = 0.022, respectively) and an improvement in HRQoL (health-related quality of life (SF-36)) (p < 0.05) from baseline were observed within the experimental group over time. Statistically significant differences were also shown for sleep duration at 4 weeks and habitual sleep efficiency at 8 weeks in follow-up visits from baseline within the experimental group (p = 0.018 and p = 0.038, respectively). Overall, these findings support the use of CoQ10 plus NADH supplementation as a potentially safe therapeutic option for reducing perceived cognitive fatigue and improving the health-related quality of life in ME/CFS patients. Future interventions are needed to corroborate these clinical benefits and also explore the underlying pathomechanisms of CoQ10 and NADH administration in ME/CFS.J.C.-M. received financial support and honoraria from Vitae Health Innovation Co., S.L. (Montmeló, Barcelona, Spain). This study was partially supported by the Vall d’Hebron Hospital Research Institute (Barcelona, Spain). Vitae Health Innovation Co. supplied both treatments (Coenzyme Q10 and NADH supplement tablets and placebo)

    Sound Absorption Properties of Perforated Recycled Polyurethane Foams Reinforced with Woven Fabric

    Full text link
    [EN] The acoustic properties of recycled polyurethane foams are well known. Such foams are used as a part of acoustic solutions in different fields such as building or transport. This paper aims to seek improvements in the sound absorption of these recycled foams when they are combined with fabrics. For this aim, foams have been drilled with cylindrical perforations, and also combined with different fabrics. The effect on the sound absorption is evaluated based on the following key parameters: perforation rate (5% and 20%), aperture size (4 mm and 6 mm), and a complete perforation depth. Experimental measurements were performed by using an impedance tube for the characterization of its acoustic behavior. Sound absorption of perforated samples is also studied¿numerically by finite element simulations, where the viscothermal losses were considered; and analytically by using models for the perforated foam and the fabric. Two textile fabrics were used in combination with perforated polyurethane samples. Results evidence a modification of the sound absorption at mid frequencies employing fabrics that have a membrane-type acoustic response.This research was financially supported by the Ministry of Economy and Innovation (MINECO) and the European Union FEDER through project FIS2015-65998-C2-2 and by projects AICO/2016/060 and ACIF/2017/073 by Regional Ministry of Education, Culture and Sport of the Generalitat Valenciana and with the support of European Structural Investment Funds (ESIF-European Union).Atiénzar-Navarro, R.; Rey Tormos, RMD.; Alba, J.; Sánchez Morcillo, VJ.; Picó Vila, R. (2020). Sound Absorption Properties of Perforated Recycled Polyurethane Foams Reinforced with Woven Fabric. Polymers. 12(2):1-18. https://doi.org/10.3390/polym12020401S118122Hamernik, R. P., & Ahroon, W. A. (1998). Interrupted noise exposures: Threshold shift dynamics and permanent effects. The Journal of the Acoustical Society of America, 103(6), 3478-3488. doi:10.1121/1.423056Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809Ramis, J., Del Rey, R., Alba, J., Godinho, L., & Carbajo, J. (2014). A model for acoustic absorbent materials derived from coconut fiber. Materiales de Construcción, 64(313), e008. doi:10.3989/mc.2014.00513Yang, W., Dong, Q., Liu, S., Xie, H., Liu, L., & Li, J. (2012). Recycling and Disposal Methods for Polyurethane Foam Wastes. Procedia Environmental Sciences, 16, 167-175. doi:10.1016/j.proenv.2012.10.023Gama, N., Silva, R., Carvalho, A. P. O., Ferreira, A., & Barros-Timmons, A. (2017). Sound absorption properties of polyurethane foams derived from crude glycerol and liquefied coffee grounds polyol. Polymer Testing, 62, 13-22. doi:10.1016/j.polymertesting.2017.05.042Rey, R. del, Alba, J., Arenas, J. P., & Sanchis, V. J. (2012). An empirical modelling of porous sound absorbing materials made of recycled foam. Applied Acoustics, 73(6-7), 604-609. doi:10.1016/j.apacoust.2011.12.009Chen, S., & Jiang, Y. (2016). The acoustic property study of polyurethane foam with addition of bamboo leaves particles. Polymer Composites, 39(4), 1370-1381. doi:10.1002/pc.24078Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176(-1), 379. doi:10.1017/s0022112087000727Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824Voronina, N. (1994). Acoustic properties of fibrous materials. Applied Acoustics, 42(2), 165-174. doi:10.1016/0003-682x(94)90005-1Umnova, O., Attenborough, K., Shin, H.-C., & Cummings, A. (2005). Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials. Applied Acoustics, 66(6), 607-624. doi:10.1016/j.apacoust.2004.02.005Zhang, C., Li, J., Hu, Z., Zhu, F., & Huang, Y. (2012). Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity. Materials & Design, 41, 319-325. doi:10.1016/j.matdes.2012.04.031Chevillotte, F. (2012). Controlling sound absorption by an upstream resistive layer. Applied Acoustics, 73(1), 56-60. doi:10.1016/j.apacoust.2011.07.005Lou, C.-W., Huang, S.-Y., Huang, C.-H., Pan, Y.-J., Yan, R., Hsieh, C.-T., & Lin, J.-H. (2015). Effects of structure design on resilience and acoustic absorption properties of porous flexible-foam based perforated composites. Fibers and Polymers, 16(12), 2652-2662. doi:10.1007/s12221-015-5164-6Lin, J.-H., Chuang, Y.-C., Li, T.-T., Huang, C.-H., Huang, C.-L., Chen, Y.-S., & Lou, C.-W. (2016). Effects of Perforation on Rigid PU Foam Plates: Acoustic and Mechanical Properties. Materials, 9(12), 1000. doi:10.3390/ma9121000Xia, X., Zhang, Z., Zhao, W., Li, C., Ding, J., Liu, C., & Liu, Y. (2017). Acoustic properties of closed-cell aluminum foams with different macrostructures. Journal of Materials Science & Technology, 33(11), 1227-1234. doi:10.1016/j.jmst.2017.07.012ATALLA, N., PANNETON, R., SGARD, F. C., & OLNY, X. (2001). ACOUSTIC ABSORPTION OF MACRO-PERFORATED POROUS MATERIALS. Journal of Sound and Vibration, 243(4), 659-678. doi:10.1006/jsvi.2000.3435Olny, X., & Boutin, C. (2003). Acoustic wave propagation in double porosity media. The Journal of the Acoustical Society of America, 114(1), 73-89. doi:10.1121/1.1534607Sgard, F. C., Olny, X., Atalla, N., & Castel, F. (2005). On the use of perforations to improve the sound absorption of porous materials. Applied Acoustics, 66(6), 625-651. doi:10.1016/j.apacoust.2004.09.008Carbajo, J., Prieto, A., Ramis, J., & Río-Martín, L. (2019). A non-parametric fluid-equivalent approach for the acoustic characterization of rigid porous materials. Applied Mathematical Modelling, 76, 330-347. doi:10.1016/j.apm.2019.05.046Ekici, B., Kentli, A., & Küçük, H. (2012). Improving Sound Absorption Property of Polyurethane Foams by Adding Tea-Leaf Fibers. Archives of Acoustics, 37(4), 515-520. doi:10.2478/v10168-012-0052-1Segura Alcaraz, M. P., Bonet-Aracil, M., Segura Alcaraz, J. G., & Montava Seguí, I. (2017). Sound absorption of textile material using a microfibres resistive layer. IOP Conference Series: Materials Science and Engineering, 254, 072022. doi:10.1088/1757-899x/254/7/072022Pieren, R. (2012). Sound absorption modeling of thin woven fabrics backed by an air cavity. Textile Research Journal, 82(9), 864-874. doi:10.1177/0040517511429604Romero-García, V., Theocharis, G., Richoux, O., & Pagneux, V. (2016). Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America, 139(6), 3395-3403. doi:10.1121/1.4950708Ingard, K. U., & Dear, T. A. (1985). Measurement of acoustic flow resistance. Journal of Sound and Vibration, 103(4), 567-572. doi:10.1016/s0022-460x(85)80024-9Jayabal, S., & Natarajan, U. (2011). Drilling analysis of coir-fibre-reinforced polyester composites. Bulletin of Materials Science, 34(7), 1563-1567. doi:10.1007/s12034-011-0359-yDel Rey, R., Alba, J., Blanes, M., & Marco, B. (2013). Absorción acústica de cortinas textiles en función del vuelo. Materiales de Construcción, 63(312), 569-580. doi:10.3989/mc.2013.0551
    corecore