232 research outputs found

    Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection

    Get PDF
    Background: The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. This mite reproduces in brood cells and parasitizes immature and adult bees. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differences that affect gene expression relevant to the bee's tolerance, as first steps toward unravelling mechanisms of host response and differences in susceptibility to Varroa parasitism. Results: We explored the transcriptional response to mite parasitism in two genetic stocks of A. mellifera which differ in susceptibility to Varroa, comparing parasitized and non-parasitized full-sister pupae from both stocks. Bee expression profiles were analyzed using microarrays derived from honey bee ESTs whose annotation has recently been enhanced by results from the honey bee genome sequence. We measured differences in gene expression in two colonies of Varroa-susceptible and two colonies of Varroa-tolerant bees. We identified a set of 148 genes with significantly different patterns of expression: 32 varied with the presence of Varroa, 116 varied with bee genotype, and 2 with both. Varroa parasitism caused changes in the expression of genes related to embryonic development, cell metabolism and immunity. Bees tolerant to Varroa were mainly characterized by differences in the expression of genes regulating neuronal development, neuronal sensitivity and olfaction. Differences in olfaction and sensitivity to stimuli are two parameters that could, at least in part, account for bee tolerance to Varroa; differences in olfaction may be related to increased grooming and hygienic behavior, important behaviors known to be involved in Varroa tolerance. Conclusion: These results suggest that differences in behavior, rather than in the immune system, underlie Varroa tolerance in honey bees, and give an indication of the specific physiological changes found in parasitized bees. They provide a first step toward better understanding molecular pathways involved in this important host-parasite relationshi

    Buildings LCA and digitalization: Designers\u27 toolbox based on a survey

    Get PDF
    In a context of digitalization and increasing quality requirements, the building sector is facing an increasing level of complexity regarding its design process. This results in a growing number of involved actors from different domains, a multitude of tasks to be completed and a higher degree of needed expertise. New buildings are also required to reach higher performances in terms of environmental quality. To that regard, the exploitation of the full potential of digital tools can facilitate the integration of environmental aspects in the planning process, limit productivity shortcomings and reduce environmental impacts, which can result from an unaware decision making. Building environmental assessment can be performed through several Life Cycle Assessment (LCA)-based tools. “Pure calculation” tools quantify final buildings\u27 environmental potential, while “complex tools” additionally support decision making during the planning process. It is often difficult to choose the best suitable tool, which strongly depends on the user\u27s needs. Within the IEA EBC Annex 72, a survey was realized with the main objective of creating a comprehensive overview of the existing tools dedicated to buildings LCA. The questionnaire included the usability, functionality, compliance, data reliability and interoperability of the analysed tools. Lastly, based on the survey outcomes and their critical assessment, a procedure for the identification and selection of a tool has been proposed based on user\u27s needs. As a result, this work outlines main features of currently available building LCA tools, for which there is a harmonized status in terms of usability and overall applied LCA methodology. Despite the need for more automatized workflows, tools\u27 embedding is mostly not yet applicable in system chains or limited to a restricted number of tools

    The microsporidian parasites Nosema ceranae and Nosema apis are widespread in honeybee (Apis mellifera) colonies across Scotland

    Get PDF
    Nosema ceranae is spreading into areas where Nosema apis already exists. N. ceranae has been reported to cause an asymptomatic infection that may lead, ultimately, to colony collapse. It is thought that there may be a temperature barrier to its infiltration into countries in colder climates. In this study, 71 colonies from Scottish Beekeeper’s Association members have been screened for the presence of N. apis and N. ceranae across Scotland. We find that only 11 of the 71 colonies tested positive for spores by microscopy. However, 70.4 % of colonies screened by PCR revealed the presence of both N. ceranae and N. apis, with only 4.2 or 7 % having either strain alone and 18.3 % being Nosema free. A range of geographically separated colonies testing positive for N. ceranae were sequenced to confirm their identity. All nine sequences confirmed the presence of N. ceranae and indicated the presence of a single new variant. Furthermore, two of the spore-containing colonies had only N. ceranae present, and these exhibited the presence of smaller spores that could be distinguished from N. apis by the analysis of average spore size. Differential quantification of the PCR product revealed N. ceranae to be the dominant species in all seven samples tested. In conclusion, N. ceranae is widespread in Scotland where it exists in combination with the endemic N. apis. A single variant, identical to that found in France (DQ374655) except for the addition of a single nucleotide polymorphism, is present in Scotland

    Modulatory Communication Signal Performance Is Associated with a Distinct Neurogenomic State in Honey Bees

    Get PDF
    Studies of animal communication systems have revealed that the perception of a salient signal can cause large-scale changes in brain gene expression, but little is known about how communication affects the neurogenomic state of the sender. We explored this issue by studying honey bees that produce a vibratory modulatory signal. We chose this system because it represents an extreme case of animal communication; some bees perform this behavior intensively, effectively acting as communication specialists. We show large differences in patterns of brain gene expression between individuals producing vibratory signal as compared with carefully matched non-senders. Some of the differentially regulated genes have previously been implicated in the performance of other motor activities, including courtship behavior in Drosophila melanogaster and Parkinson's Disease in humans. Our results demonstrate for the first time a neurogenomic brain state associated with sending a communication signal and provide suggestive glimpses of molecular roots for motor control

    Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae

    Get PDF
    International audienceBACKGROUND: The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. METHODOLOGY/FINDING: Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. CONCLUSIONS/SIGNIFICANCE: After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing prevalence of N. ceranae with high pesticide content in beehives may contribute to colony depopulation

    Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema

    Get PDF
    Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide

    Multiple Routes of Pesticide Exposure for Honey Bees Living Near Agricultural Fields

    Get PDF
    Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments
    corecore