15 research outputs found

    Ecological and socioeconomic impacts of invasive alien species in island ecosystems

    Get PDF
    Minimizing the impact of invasive alien species (IAS) on islands and elsewhere requires researchers to provide cogent information on the environmental and socioeconomic consequences of IAS to the public and policy makers. Unfortunately, this information has not been readily available owing to a paucity of scientific research and the failure of the scientific community to make their findings readily available to decision makers. This review explores the vulnerability of islands to biological invasion, reports on environmental and socioeconomic impacts of IAS on islands and provides guidance and information on technical resources that can help minimize the effects of IAS in island ecosystems. This assessment is intended to provide a holistic perspective on island-IAS dynamics, enable biologists and social scientists to identify information gaps that warrant further research and serve as a primer for policy makers seeking to minimize the impact of IAS on island systems. Case studies have been selected to reflect the most scientifically-reliable information on the impacts of IAS on islands. Sufficient evidence has emerged to conclude that IAS are the most significant drivers of population declines and species extinctions in island ecosystems worldwide. Clearly, IAS can also have significant socioeconomic impacts directly (for example human health) and indirectly through their effects on ecosystem goods and services.These impacts are manifest at all ecological levels and affect the poorest, as well as richest, island nations. The measures needed to prevent and minimize the impacts of IAS on island ecosystems are generally known. However, many island nations and territories lack the scientific and technical information, infrastructure and human and financial resources necessary to adequately address the problems caused by IAS. Because every nation is an exporter and importer of goods and services, every nation is also a facilitator and victim of the invasion of alien species.Wealthy nations therefore need to help raise the capacity of island nations and territories to minimize the spread and impact of IAS

    Using Microfluidics to Study Tumor Hypoxia

    No full text
    From the Washington University Undergraduate Research Digest: WUURD, Volume 11, 2015-2016. Published by the Office of Undergraduate Research, Joy Zalis Kiefer Director of Undergraduate Research and Assistant Dean in the College of Arts & Sciences; Lindsey Paunovich, Editor; Kristin Sobotka, Editor; Jennifer Kohl. Mentor: Steven Georg

    Microfluidic device to attain high spatial and temporal control of oxygen.

    No full text
    Microfluidic devices have been successfully used to recreate in vitro biological microenvironments, including disease states. However, one constant issue for replicating microenvironments is that atmospheric oxygen concentration (21% O2) does not mimic physiological values (often around 5% O2). We have created a microfluidic device that can control both the spatial and temporal variations in oxygen tensions that are characteristic of in vivo biology. Additionally, since the microcirculation is responsive to hypoxia, we used a 3D sprouting angiogenesis assay to confirm the biological relevance of the microfluidic platform. Our device consists of three parallel connected tissue chambers and an oxygen scavenger channel placed adjacent to these tissue chambers. Experimentally measured oxygen maps were constructed using phosphorescent lifetime imaging microscopy and compared with values from a computational model. The central chamber was loaded with endothelial and fibroblast cells to form a 3D vascular network. Four to six days later, fibroblasts were loaded into the side chambers, and a day later the oxygen scavenger (sodium sulfite) was flowed through the adjacent channel to induce a spatial and temporal oxygen gradient. Our results demonstrate that both constant chronic and intermittent hypoxia can bias vessel growth, with constant chronic hypoxia showing higher degrees of biased angiogenesis. Our simple design provides consistent control of spatial and temporal oxygen gradients in the tissue microenvironment and can be used to investigate important oxygen-dependent biological processes in conditions such as cancer and ischemic heart disease

    Acute gastrointestinal bleeding: proposed study outcomes for new randomised controlled trials

    No full text
    Acute gastrointestinal bleeding (GIB) remains a common cause of hospitalisation. However, interpretation and comparisons of published studies in GIB have been hampered by disparate study methodology.NIH - National Heart, Lung, and Blood Institute; VA Merit Review Grant, Grant/Award Number: CLIN-013- 03F; UCLA/CURE DDRCC Grant Human Studies Core, Grant/Award Number: NIH-NIDDK P30 DK041301
    corecore