4,364 research outputs found

    A structural systematic study of three isomers of difluoro-N-(4-pyridyl)benzamide

    Get PDF
    The isomers 2,3-, (I), 2,4-, (II), and 2,5-difluoro-N-(4-pyridyl)benzamide, (III), all with formula C₁₂H₈F₂N₂O, all exhibit intramolecular C-H...O=C and N-H...F contacts [both with S(6) motifs]. In (I), intermolecular N-H...O=C interactions form one-dimensional chains along [010] [N...O = 3.0181 (16) Å], with weaker C-H...N interactions linking the chains into sheets parallel to the [001] plane, further linked into pairs via C-H...F contacts about inversion centres; a three-dimensional herring-bone network forms via C-H...π(py) (py is pyridyl) interactions. In (II), weak aromatic C-H...N(py) interactions form one-dimensional zigzag chains along [001]; no other interactions with H...N/O/F < 2.50 Å are present, apart from long N/C-H...O=C and C-H...F contacts. In (III), N-H...N(py) interactions form one-dimensional zigzag chains [as C(6) chains] along [010] augmented by a myriad of weak C-H...π(arene) and O=C...O=C interactions and C-H...O/N/F contacts. Compound (III) is isomorphous with the parent N-(4-pyridyl)benzamide [Noveron, Lah, Del Sesto, Arif, Miller & Stang (2002). J. Am. Chem. Soc. 124, 6613-6625] and the three 2/3/4-fluoro-N-(4-pyridyl)benzamides [Donnelly, Gallagher & Lough (2008). Acta Cryst. C64, o335-o340]. The study expands our series of fluoro(pyridyl)benzamides and augments our understanding of the competition between strong hydrogen-bond formation and weaker influences on crystal packing

    A structural systematic study of four isomers of difluoro-N-(3-pyridyl)benzamide

    Get PDF
    The four isomers 2,4-, (I), 2,5-, (II), 3,4-, (III), and 3,5-difluoro-N-(3-pyridyl)benzamide, (IV), all with formula C12H8F2N2O, display molecular similarity, with interplanar angles between the C6/C5N rings ranging from 2.94 (11)° in (IV) to 4.48 (18)° in (I), although the amide group is twisted from either plane by 18.0 (2)-27.3 (3)°. Compounds (I) and (II) are isostructural but are not isomorphous. Intermolecular N-H...O=C interactions form one-dimensional C(4) chains along [010]. The only other significant interaction is C-H...F. The pyridyl (py) N atom does not participate in hydrogen bonding; the closest H...Npy contact is 2.71 Å in (I) and 2.69 Å in (II). Packing of pairs of one-dimensional chains in a herring-bone fashion occurs via [pi]-stacking interactions. Compounds (III) and (IV) are essentially isomorphous (their a and b unit-cell lengths differ by 9%, due mainly to 3,4-F2 and 3,5-F2 substitution patterns in the arene ring) and are quasi-isostructural. In (III), benzene rotational disorder is present, with the meta F atom occupying both 3- and 5-F positions with site occupancies of 0.809 (4) and 0.191 (4), respectively. The N-H...Npy intermolecular interactions dominate as C(5) chains in tandem with C-H...Npy interactions. C-H...O=C interactions form R22(8) rings about inversion centres, and there are [pi]-[pi] stacks about inversion centres, all combining to form a three-dimensional network. By contrast, (IV) has no strong hydrogen bonds; the N-H...Npy interaction is 0.3 Å longer than in (III). The carbonyl O atom participates only in weak interactions and is surrounded in a square-pyramidal contact geometry with two intramolecular and three intermolecular C-H...O=C interactions. Compounds (III) and (IV) are interesting examples of two isomers with similar unit-cell parameters and gross packing but which display quite different intermolecular interactions at the primary level due to subtle packing differences at the atom/group/ring level arising from differences in the peripheral ring-substitution patterns

    Redetermination of para-aminopyridine (fampridine, EL-970) at 150 K

    Get PDF
    The structure of fampridine (EL-970) or 4-aminopyridine, C₅H₆N₂, has been redetermined at 150 K. The room-temperature structure has been reported previously [Chao & Schempp (1977). Acta Cryst. B33, 1557-1564]. Pyramidalization at the amine N atom occurs in fampridine, with the N atom 0.133 (11) Å from the plane of the three C/H/H atoms to which it is bonded; the interplanar angle between the pyridyl ring and NH2 group is 21 (2)°. Aggregation in the solid state occurs by N-H...N and N-H...[pi](pyridine) interactions with N...N and N...[pi](centroid) distances of 2.9829 (18) and 3.3954 (15) Å, respectively; a C-H...[pi](pyridine) contact completes the intermolecular interactions [C...[pi](centroid) = 3.6360 (16) Å]

    Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol

    Get PDF
    The effects of poisoning of Pd catalysts with Bi and annealing in a polyol (ethylene glycol) were studied on the semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY). An increase in the Pd:Bi ratio from 7 to 1 in the Bi-poisoned catalysts decreased the hydrogenation activity due to blocking of active sites, but increased maximum alkene yield from 91.5% for the Pd catalyst to 94–96% for all Bi-poisoned Pd catalysts, by decreasing the adsorption energy of alkene molecules and suppressing the formation of ÎČ-hydride phase. Annealing of the catalysts induced the formation of intermetallic phases and decreased its activity due to sintering of the catalytic particles and low activity of intermetallic compounds. Langmuir–Hinshelwood kinetic modelling of the experimental data showed that poisoning of Pd with Bi changed the relative adsorption constants of organic species suggesting ligand effects at high Bi content

    An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 1: Theory and application

    Get PDF
    A computer program, the Propeller Nacelle Aerodynamic Performance Prediction Analysis (PANPER), was developed for the prediction and analysis of the performance and airflow of propeller-nacelle configurations operating over a forward speed range inclusive of high speed flight typical of recent propfan designs. A propeller lifting line, wake program was combined with a compressible, viscous center body interaction program, originally developed for diffusers, to compute the propeller-nacelle flow field, blade loading distribution, propeller performance, and the nacelle forebody pressure and viscous drag distributions. The computer analysis is applicable to single and coaxial counterrotating propellers. The blade geometries can include spanwise variations in sweep, droop, taper, thickness, and airfoil section type. In the coaxial mode of operation the analysis can treat both equal and unequal blade number and rotational speeds on the propeller disks. The nacelle portion of the analysis can treat both free air and tunnel wall configurations including wall bleed. The analysis was applied to many different sets of flight conditions using selected aerodynamic modeling options. The influence of different propeller nacelle-tunnel wall configurations was studied. Comparisons with available test data for both single and coaxial propeller configurations are presented along with a discussion of the results

    An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 2: User's manual

    Get PDF
    A user's manual for the computer program developed for the prediction of propeller-nacelle aerodynamic performance reported in, An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1 -- Theory and Application, is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and the software used in the computer program as it relates to the theory presented in Volume 1. Sample input data setups are provided along with selected printout of the program output for one of the sample setups

    Ice Accretion with Varying Surface Tension

    Get PDF
    During an icing encounter of an aircraft in flight, super-cooled water droplets impinging on an airfoil may splash before freezing. This paper reports tests performed to determine if this effect is significant and uses the results to develop an improved scaling method for use in icing test facilities. Simple laboratory tests showed that drops splash on impact at the Reynolds and Weber numbers typical of icing encounters. Further confirmation of droplet splash came from icing tests performed in the NaSA Lewis Icing Research Tunnel (IRT) with a surfactant added to the spray water to reduce the surface tension. The resulting ice shapes were significantly different from those formed when no surfactant was added to the water. These results suggested that the droplet Weber number must be kept constant to properly scale icing test conditions. Finally, the paper presents a Weber-number-based scaling method and reports results from scaling tests in the IRT in which model size was reduced up to a factor of 3. Scale and reference ice shapes are shown which confirm the effectiveness of this new scaling method

    Acetylene hydrogenation over structured Au-Pd catalysts

    Get PDF
    Acknowledgements We thank the University of Aberdeen for financial support and Dr K. McManus (University of Aberdeen) for performing preliminary experiments with these samples. Electron microscopy and EDS were performed by RTB at the Electron Microscopy Facility, University of St Andrews.Peer reviewedPostprin

    IR Kuiper Belt Constraints

    Get PDF
    We compute the temperature and IR signal of particles of radius aa and albedo α\alpha at heliocentric distance RR, taking into account the emissivity effect, and give an interpolating formula for the result. We compare with analyses of COBE DIRBE data by others (including recent detection of the cosmic IR background) for various values of heliocentric distance, RR, particle radius, aa, and particle albedo, α\alpha. We then apply these results to a recently-developed picture of the Kuiper belt as a two-sector disk with a nearby, low-density sector (40<R<50-90 AU) and a more distant sector with a higher density. We consider the case in which passage through a molecular cloud essentially cleans the Solar System of dust. We apply a simple model of dust production by comet collisions and removal by the Poynting-Robertson effect to find limits on total and dust masses in the near and far sectors as a function of time since such a passage. Finally we compare Kuiper belt IR spectra for various parameter values.Comment: 34 pages, LaTeX, uses aasms4.sty, 11 PostScript figures not embedded. A number of substantive comments by a particularly thoughtful referee have been addresse
    • 

    corecore