35 research outputs found

    Protecting Human and Animal Health: The Road from Animal Models to New Approach Methods

    Get PDF
    Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made

    England’s proxy warriors? Women, war and sport

    Get PDF
    It has been claimed that the one place Englishness exists is on the sports field, and usually it is men’s sport that appears central to creating a sense of English national identity. However, in light of England’s sporting success across multiple women’s sports (namely cricket, netball, association football and rugby union), there warrants a need to begin to question the place of these female athletes in discussions of the nation. Drawing on extensive interview data with women who have represented England at sport, this paper seeks to ‘give a voice’ to these women whose experiences have often been ignored by both the popular press and academics alike. This research discusses the way in which English women represent their nation, both on the field of play and more broadly, and sheds light on the complexity of the intersections of gender and national identity. Attention is also paid to the role of women as warriors in the conventional sense. It is argued that, through playing international, representative sport, the women actively embody the nation, with national identity often overriding gendered identity in these instances. In this sense, they become proxy warriors for the nation

    The urgency for optimization and harmonization of thyroid hormone analyses and their interpretation in developmental and reproductive toxicology studies.

    No full text
    In recent years several OECD test guidelines have been updated and some will be updated shortly with the requirement to measure thyroid hormone levels in the blood of mammalian laboratory species. There is, however, an imperative need for clarification and guidance regarding the collection, assessment, and interpretation of thyroid hormone data for regulatory toxicology and risk assessment. Clarification and guidance is needed for 1) timing and methods of blood collection, 2) standardization and validation of the analytical methods, 3) triggers for additional measurements, 4) the need for T4 measurements in postnatal day (PND) 4 pups, and 5) the interpretation of changes in thyroid hormone levels regarding adversity. Discussions on these topics have already been initiated, and involve expert scientists from a number of international multisector organizations. This paper provides an overview of existing issues, current activities and recommendations for moving forward

    The urgency for optimization and harmonization of thyroid hormone analyses and their interpretation in developmental and reproductive toxicology studies.

    No full text
    In recent years several OECD test guidelines have been updated and some will be updated shortly with the requirement to measure thyroid hormone levels in the blood of mammalian laboratory species. There is, however, an imperative need for clarification and guidance regarding the collection, assessment, and interpretation of thyroid hormone data for regulatory toxicology and risk assessment. Clarification and guidance is needed for 1) timing and methods of blood collection, 2) standardization and validation of the analytical methods, 3) triggers for additional measurements, 4) the need for T4 measurements in postnatal day (PND) 4 pups, and 5) the interpretation of changes in thyroid hormone levels regarding adversity. Discussions on these topics have already been initiated, and involve expert scientists from a number of international multisector organizations. This paper provides an overview of existing issues, current activities and recommendations for moving forward

    The urgency for optimization and harmonization of thyroid hormone analyses and their interpretation in developmental and reproductive toxicology studies

    No full text
    In recent years several OECD test guidelines have been updated and some will be updated shortly with the requirement to measure thyroid hormone levels in the blood of mammalian laboratory species. There is, however, an imperative need for clarification and guidance regarding the collection, assessment, and interpretation of thyroid hormone data for regulatory toxicology and risk assessment. Clarification and guidance is needed for 1) timing and methods of blood collection, 2) standardization and validation of the analytical methods, 3) triggers for additional measurements, 4) the need for T4 measurements in postnatal day (PND) 4 pups, and 5) the interpretation of changes in thyroid hormone levels regarding adversity. Discussions on these topics have already been initiated, and involve expert scientists from a number of international multisector organizations. This paper provides an overview of existing issues, current activities and recommendations for moving forward

    Rethinking developmental toxicity testing: Evolution or revolution?

    No full text
    BACKGROUND: Current developmental toxicity testing adheres largely to protocols suggested in 1966 involving the administration of test compound to pregnant laboratory animals. After more than 50 years of embryo-fetal development testing, are we ready to consider a different approach to human developmental toxicity testing? METHODS: A workshop was held under the auspices of the Developmental and Reproductive Toxicology Technical Committee of the ILSI Health and Environmental Sciences Institute to consider how we might design developmental toxicity testing if we started over with 21st century knowledge and techniques (revolution). We first consider what changes to the current protocols might be recommended to make them more predictive for human risk (evolution). RESULTS: The evolutionary approach includes modifications of existing protocols and can include humanized models, disease models, more accurate assessment and testing of metabolites, and informed approaches to dose selection. The revolution could start with hypothesis-driven testing where we take what we know about a compound or close analog and answer specific questions using targeted experimental techniques rather than a one-protocol-fits-all approach. Central to the idea of hypothesis-driven testing is the concept that testing can be done at the level of mode of action. It might be feasible to identify a small number of key events at a molecular or cellular level that predict an adverse outcome and for which testing could be performed in vitro or in silico or, rarely, using limited in vivo models. Techniques for evaluating these key events exist today or are in development. DISCUSSION: Opportunities exist for refining and then replacing current developmental toxicity testing protocols using techniques that have already been developed or are within reach
    corecore