370 research outputs found

    16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice

    Get PDF
    Acknowledgements The authors acknowledge the assistance of Grietje Holtrop (RINH-BioSS) with the statistical analysis of the data and the Wellcome Trust Sanger Institute’s 454 pyrosequencing team for generating 16S rRNA gene data. AWW, PS and JP received core funding support from the Wellcome Trust [grant number 098051]. AWW, JCM, HJF and KPS are funded by the Scottish Government (SG-RESAS).Peer reviewedPublisher PD

    Special issue : The Human Intestinal Microbiota

    Get PDF
    Peer reviewedPublisher PD

    Incorporating anthropogenic influences into fire probability models : effects of human activity and climate change on fire activity in California

    Get PDF
    The costly interactions between humans and wildfires throughout California demonstrate the need to understand the relationships between them, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires, with previously published estimates of increases ranging from nine to fifty-three percent by the end of the century. Our goal is to assess the role of climate and anthropogenic influences on the state's fire regimes from 1975 to 2050. We develop an empirical model that integrates estimates of biophysical indicators relevant to plant communities and anthropogenic influences at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of explanatory power in the model. We also find that the total area burned is likely to increase, with burned area expected to increase by 2.2 and 5.0 percent by 2050 under climatic bookends (PCM and GFDL climate models, respectively). Our two climate models show considerable agreement, but due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid inland deserts and coastal areas of the south. Given the strength of human-related variables in some regions, however, it is clear that comprehensive projections of future fire activity should include both anthropogenic and biophysical influences. Previous findings of substantially increased numbers of fires and burned area for California may be tied to omitted variable bias from the exclusion of human influences. The omission of anthropogenic variables in our model would overstate the importance of climatic ones by at least 24%. As such, the failure to include anthropogenic effects in many models likely overstates the response of wildfire to climatic change

    A role for glycosaminoglycans in the development of collagen fibrils

    Get PDF
    AbstractExtensive data on the glycosaminoglycan (GAG) composition and the collagen fibril diameter distribution have been collected for a diverse range of connective tissues. It is shown that tissues with the smallest diameter collagen fibrils (mass-average diameter < 60 nm) have high concentrations of hyaluronic acid and that tissues with the largest diameter collagen fibrils (mass-average diameter ∼200 nm) have high concentrations of dermatan sulphate. It is suggested that the lateral growth of fibrils beyond a diameter of about 60 nm is inhibited by the presence of an excess of hyaluronic acid but that this inhibitory effect may be removed by an increasing concentration of chondroitin sulphate and/or dermatan sulphate. It is also postulated that high concentrations of chondroitin sulphate will inhibit fibril growth beyond a mass-average diameter of ∼150 nm. Such an inhibition may in turn be removed by an increasing concentration of dermatan sulphate such that it becomes the dominant GAG present in the tissue

    Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid

    Get PDF
    This article is protected by copyright. All rights reserved. Acknowledgements: The authors acknowledge support from the Scottish Government Food Land and People programme (RESAS). We would like to thank Lorraine Scobbie and Gary Duncan for technical support. Funding for JP, AWW and 454 pyrosequencing was provided by the Wellcome Trust (grant number 098051).Peer reviewedPublisher PD
    corecore