2,242 research outputs found

    First High-resolution Spectroscopic Observations of an Erupting Prominence Within a Coronal Mass Ejection by the Interface Region Imaging Spectrograph (IRIS)

    Get PDF
    Spectroscopic observations of prominence eruptions associated with coronal mass ejections (CMEs), although relatively rare, can provide valuable plasma and 3D geometry diagnostics. We report the first observations by the Interface Region Imaging Spectrograph (IRIS) mission of a spectacular fast CME/prominence eruption associated with an equivalent X1.6 flare on 2014 May 9. The maximum plane-of-sky and Doppler velocities of the eruption are 1200 and 460 km/s, respectively. There are two eruption components separated by ~200 km/s in Doppler velocity: a primary, bright component and a secondary, faint component, suggesting a hollow, rather than solid, cone-shaped distribution of material. The eruption involves a left-handed helical structure undergoing counter-clockwise (viewed top-down) unwinding motion. There is a temporal evolution from upward eruption to downward fallback with less-than-free-fall speeds and decreasing nonthermal line widths. We find a wide range of Mg II k/h line intensity ratios (less than ~2 expected for optically-thin thermal emission): the lowest ever-reported median value of 1.17 found in the fallback material and a comparably high value of 1.63 in nearby coronal rain and intermediate values of 1.53 and 1.41 in the two eruption components. The fallback material exhibits a strong (>5σ> 5 \sigma) linear correlation between the k/h ratio and the Doppler velocity as well as the line intensity. We demonstrate that Doppler dimming of scattered chromospheric emission by the erupted material can potentially explain such characteristics.Comment: 12 pages, 6 figures, accepted by ApJ (Feb 15, 2015

    Supersymmetry and Lorentz Violation

    Get PDF
    Supersymmetric field theories can be constructed that violate Lorentz and CPT symmetry. We illustrate this with some simple examples related to the original Wess-Zumino model.Comment: 4 page

    Initial Helioseismic Observations by Hinode/SOT

    Full text link
    Results from initial helioseismic observations by Solar Optical Telescope onboard Hinode are reported. It has been demonstrated that intensity oscillation data from Broadband Filter Imager can be used for various helioseismic analyses. The k-omega power spectra, as well as corresponding time-distance cross-correlation function that promises high-resolution time-distance analysis below 6-Mm travelling distance, were obtained for G-band and CaII-H data. Subsurface supergranular patterns have been observed from our first time-distance analysis. The results show that the solar oscillation spectrum is extended to much higher frequencies and wavenumbers, and the time-distance diagram is extended to much shorter travel distances and times than they were observed before, thus revealing great potential for high-resolution helioseismic observations from Hinode.Comment: 6 pages, accepted for publication in PAS

    First high-resolution spectroscopic observations of an erupting prominence within a coronal mass ejection by the Interface Region Imaging Spectrograph (IRIS)

    Get PDF
    Spectroscopic observations of prominence eruptions associated with coronal mass ejections (CMEs), although relatively rare, can provide valuable plasma and three-dimensional geometry diagnostics. We report the first observations by the Interface Region Imaging Spectrograph mission of a spectacular fast CME/prominence eruption associated with an equivalent X1.6 flare on 2014 May 9. The maximum plane-of-sky and Doppler velocities of the eruption are 1200 and 460 km s−1, respectively. There are two eruption components separated by ~200 km s−1 in Doppler velocity: a primary, bright component and a secondary, faint component, suggesting a hollow, rather than solid, cone-shaped distribution of material. The eruption involves a left-handed helical structure undergoing counterclockwise (viewed top-down) unwinding motion. There is a temporal evolution from upward eruption to downward fallback with less-than-free-fall speeds and decreasing nonthermal line widths. We find a wide range of Mg ii k/h line intensity ratios (less than ~2 expected for optically-thin thermal emission): the lowest ever reported median value of 1.17 found in the fallback material, a comparably high value of 1.63 in nearby coronal rain, and intermediate values of 1.53 and 1.41 in the two eruption components. The fallback material exhibits a strong (>5α ) linear correlation between the k/h ratio and the Doppler velocity as well as the line intensity. We demonstrate that Doppler dimming of scattered chromospheric emission by the erupted material can potentially explain such characteristics.Publisher PDFPeer reviewe

    Lithologies Making Up CM Carbonaceous Chondrites and Their Link to Space Exposure Ages

    Get PDF
    Chondrite parent bodies are among the first large bodies to have formed in the early Solar System, and have since remained almost chemically unchanged having not grown large enough or quickly enough to undergo differentiation. Their major nonvolatile elements bear a close resemblance to the solar photosphere. Previous work has concluded that CM chondrites fall into at least four distinct space exposure age groups (0.1 megaannus, 0.2 megaannus, 0.6 megaannus and 2.0 megaannus), but the meaning of these groupings is unclear. It is possible that these meteorites came from different parent bodies which broke up at different times, or instead came from the same parent body which underwent multiple break-up events, or a combination of these scenarios

    Lithologies Making Up CM Carbonaceous Chondrites and Their Link to Space Exposure Ages

    Get PDF
    Chondrite parent bodies are among the first large bodies to have formed in the early Solar System, and have since remained almost chemically unchanged having not grown large enough or quickly enough to undergo differentiation. Their major nonvolatile elements bear a close resemblance to the solar photosphere. Previous work has concluded that CM chondrites fall into at least four distinct space exposure age groups (0.1 Ma, 0.2 Ma, 0.6 Ma and >2.0 Ma), but the meaning of these groupings is unclear. It is possible that these meteorites came from different parent bodies which broke up at different times, or instead came from the same parent body which underwent multiple break-up events, or a combination of these scenarios

    The u'g'r'i'z' Standard Star Network

    Full text link
    We present the 158 standard stars that define the u'g'r'i'z' photometric system. These stars form the basis for the photometric calibration of the Sloan Digital Sky Survey (SDSS). The defining instrument system and filters, the observing process, the reduction techniques, and the software used to create the stellar network are all described. We briefly discuss the history of the star selection process, the derivation of a set of transformation equations for the UBVRcIc system, and plans for future work.Comment: References to URLs in paper have been updated to reflect moved website. Accepted by AJ. 50 pages, including 20 pages of text, 9 tables, and 15 figures. Plain ASCII text versions of Tables 8 and 9 can be found at http://home.fnal.gov/~dtucker/ugriz/index.html (new URL
    corecore