62 research outputs found
Personal Federal Tax Issues And The Affordable Care Act: Can Tax Penalties And Subsidized Premiums Provide Sufficient Incentives For Health Insurance Purchases
The Patient Protection and Affordable Care Act of 2010 (ACA) includes many changes to the U.S. Federal Tax Code. The tax penalty imposed on individuals who choose to remain uninsured received extraordinary attention while the Supreme Court determined the constitutionality of the ACA. Now, the more relevant question is what impact the penalty may have on individual behavior. This paper presents information that suggests the tax penalty may provide insufficient incentive for many individuals to purchase insurance, even with premium tax credits to reduce the cost for households earning up to 400% of the federal poverty limit. The ACA also reduces the tax benefit from themedical expense deduction by increasing the threshold amount from 7.5% of adjusted gross income to 10% of adjusted gross income. This may increase the after-tax cost of purchasing health insurance, especially for healthier individuals whose medical expenses (excluding insurance premiums) are below the threshold amount, increasing the incentive to forego the purchase of health insurance and to pay the penalty instead. An approach more consistent with the aims of the ACA is to eliminate the threshold amount but limit the deduction to lower-income taxpayers
Lifetime Earnings, Mortality, And Social Security Benefits: Implications For Reform
The Social Security system is facing significant financial challenges, but politicians, economists, and other experts cannot agree on appropriate solutions. Raising taxes and/or cutting benefits are never popular proposals, and competing groups want to protect the poor while at the same time maintain fairness for the more wealthy. Recent studies, such as Cristia (2007), Duggan et al. (2007), and Waldron (2007), have shown a strong correlation between lifetime earnings and mortality, suggesting that differences in life expectancy between the wealthy and the less wealthy may be getting larger, thus eroding the progressivity of the Social Security system. Our results show that for a mortality difference of one or two years, benefit reductions in the range of 2.5% to 16% would be needed to maintain the current level of progressivity for a male living to age 80. If the mortality difference grows to four or five years, the benefit reductions would need to be much greater, anywhere from approximately 14% to 31%. A reduction in benefits based on lifetime earnings can improve the long-run viability of the Social Security system while maintaining its current level of progressivity
Renormalization group and perfect operators for stochastic differential equations
We develop renormalization group methods for solving partial and stochastic
differential equations on coarse meshes. Renormalization group transformations
are used to calculate the precise effect of small scale dynamics on the
dynamics at the mesh size. The fixed point of these transformations yields a
perfect operator: an exact representation of physical observables on the mesh
scale with minimal lattice artifacts. We apply the formalism to simple
nonlinear models of critical dynamics, and show how the method leads to an
improvement in the computational performance of Monte Carlo methods.Comment: 35 pages, 16 figure
PEXO : a global modeling framework for nanosecond timing, microsecond astrometry, and μm/s radial velocities
54 pages, 2 tables, 19 figures, accepted for publication in ApJS, PEXO is available at https://github.com/phillippro/pexoThe ability to make independent detections of the signatures of exoplanets with complementary telescopes and instruments brings a new potential for robust identification of exoplanets and precision characterization. We introduce PEXO, a package for Precise EXOplanetology to facilitate the efficient modeling of timing, astrometry, and radial velocity data, which will benefit not only exoplanet science but also various astrophysical studies in general. PEXO is general enough to account for binary motion and stellar reflex motions induced by planetary companions and is precise enough to treat various relativistic effects both in the solar system and in the target system. We also model the post-Newtonian barycentric motion for future tests of general relativity in extrasolar systems. We benchmark PEXO with the pulsar timing package TEMPO2 and find that PEXO produces numerically similar results with timing precision of about 1 ns, space-based astrometry to a precision of 1{\mu}as, and radial velocity of 1 {\mu}m/s and improves on TEMPO2 for decade-long timing data of nearby targets, due to its consideration of third-order terms of Roemer delay. PEXO is able to avoid the bias introduced by decoupling the target system and the solar system and to account for the atmospheric effects which set a practical limit for ground-based radial velocities close to 1 cm/s. Considering the various caveats in barycentric correction and ancillary data required to realize cm/s modeling, we recommend the preservation of original observational data. The PEXO modeling package is available at GitHub (https://github.com/phillippro/pexo).Peer reviewe
Three red suns in the sky: A transiting, terrestrial planet in a triple M-dwarf system at 6.9 pc
We present the discovery from Transiting Exoplanet Survey Satellite (TESS) data of LTT 1445Ab. At a distance of 6.9 pc, it is the second nearest transiting exoplanet system found to date, and the closest one known for which the primary is an M dwarf. The host stellar system consists of three mid-to-late M dwarfs in a hierarchical configuration, which are blended in one TESS pixel. We use MEarth data and results from the Science Processing Operations Center data validation report to determine that the planet transits the primary star in the system. The planet has a radius of , an orbital period of days, and an equilibrium temperature of K. With radial velocities from the High Accuracy Radial Velocity Planet Searcher, we place a 3σ upper mass limit of 8.4 on the planet. LTT 1445Ab provides one of the best opportunities to date for the spectroscopic study of the atmosphere of a terrestrial world. We also present a detailed characterization of the host stellar system. We use high-resolution spectroscopy and imaging to rule out the presence of any other close stellar or brown dwarf companions. Nineteen years of photometric monitoring of A and BC indicate a moderate amount of variability, in agreement with that observed in the TESS light-curve data. We derive a preliminary astrometric orbit for the BC pair that reveals an edge-on and eccentric configuration. The presence of a transiting planet in this system hints that the entire system may be co-planar, implying that the system may have formed from the early fragmentation of an individual protostellar core.Accepted manuscrip
TESS Reveals HD 118203 b to be a Transiting Planet
The exoplanet HD 118203 b, orbiting a bright (V = 8.05) host star, was discovered using the radial velocity method by da Silva et al., but was not previously known to transit. Transiting Exoplanet Survey Satellite (TESS) photometry has revealed that this planet transits its host star. Nine planetary transits were observed by TESS, allowing us to measure the radius of the planet to be 1.136^(+0.029)_(-0.028) R_J, and to calculate the planet mass to be 2.166^(+0.074)_(-0.079) M_J. The host star is slightly evolved with an effective temperature of T_(eff) = 5683^(+84)_(-85) K and a surface gravity of log g = 3.889^(+0.017)_(-0.018). With an orbital period of 6.134985^(+0.000029_(-0.000030) days and an eccentricity of 0.314 ± 0.017, the planet occupies a transitional regime between circularized hot Jupiters and more dynamically active planets at longer orbital periods. The host star is among the 10 brightest known to have transiting giant planets, providing opportunities for both planetary atmospheric and asteroseismic studies
The First Habitable Zone Earth-Sized Planet From TESS II: Spitzer Confirms TOI-700 d
We present Spitzer 4.5 μm observations of the transit of TOI-700 d, a habitable-zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325–6534456). TOI-700 d has a radius of 1.144^(+0.062)_(-0.061) R⊕ and orbits within its host star's conservative habitable zone with a period of 37.42 days (T_(eq) ~ 269 K). TOI-700 also hosts two small inner planets (R_b = 1.037^(+0.0065)_(-0.064) R⊕ and R_c = 2.65^(+0.16)_(-0.15) R⊕) with periods of 9.98 and 16.05 days, respectively. Our Spitzer observations confirm the Transiting Exoplanet Survey Satellite (TESS) detection of TOI-700 d and remove any remaining doubt that it is a genuine planet. We analyze the Spitzer light curve combined with the 11 sectors of TESS observations and a transit of TOI-700 c from the LCOGT network to determine the full system parameters. Although studying the atmosphere of TOI-700 d is not likely feasible with upcoming facilities, it may be possible to measure the mass of TOI-700 d using state-of-the-art radial velocity (RV) instruments (expected RV semiamplitude of ~70 cm s⁻¹)
The TESS Grand Unified Hot Jupiter Survey. I. Ten TESS Planets
We report the discovery of ten short-period giant planets (TOI-2193A b,
TOI-2207 b, TOI-2236 b, TOI-2421 b, TOI-2567 b, TOI-2570 b, TOI-3331 b,
TOI-3540A b, TOI-3693 b, TOI-4137 b). All of the planets were identified as
planet candidates based on periodic flux dips observed by NASA's Transiting
Exoplanet Survey Satellite (TESS). The signals were confirmed to be from
transiting planets using ground-based time-series photometry, high angular
resolution imaging, and high-resolution spectroscopy coordinated with the TESS
Follow-up Observing Program. The ten newly discovered planets orbit relatively
bright F and G stars (,~ between 4800 and 6200 K).
The planets' orbital periods range from 2 to 10~days, and their masses range
from 0.2 to 2.2 Jupiter masses. TOI-2421 b is notable for being a Saturn-mass
planet and TOI-2567 b for being a ``sub-Saturn'', with masses of and Jupiter masses, respectively. In most cases, we
have little information about the orbital eccentricities. Two exceptions are
TOI-2207 b, which has an 8-day period and a detectably eccentric orbit (), and TOI-3693 b, a 9-day planet for which we can set an upper
limit of . The ten planets described here are the first new planets
resulting from an effort to use TESS data to unify and expand on the work of
previous ground-based transit surveys in order to create a large and
statistically useful sample of hot Jupiters.Comment: 44 pages, 15 tables, 21 figures; revised version submitted to A
An Eccentric Massive Jupiter Orbiting a Subgiant on a 9.5-day Period Discovered in the <i>Transiting Exoplanet Survey Satellite</i> Full Frame Images
We report the discovery of TOI-172 b from the Transiting Exoplanet Survey Satellite (TESS) mission, a massive hot Jupiter transiting a slightly evolved G star with a 9.48-day orbital period. This is the first planet to be confirmed from analysis of only the TESS full frame images, because the host star was not chosen as a two-minute cadence target. From a global analysis of the TESS photometry and follow-up observations carried out by the TESS Follow-up Observing Program Working Group, TOI-172 (TIC 29857954) is a slightly evolved star with an effective temperature of T eff = 5645 ± 50 K, a mass of M ⋆ = {1.128}-0.061+0.065 M ⊙, radius of R ⋆ = {1.777}-0.044+0.047 R ⊙, a surface gravity of log g ⋆ = {3.993}-0.028+0.027, and an age of {7.4}-1.5+1.6 {Gyr}. Its planetary companion (TOI-172 b) has a radius of R P = {0.965}-0.029+0.032 R J, a mass of M P = {5.42}-0.20+0.22 M J, and is on an eccentric orbit (e={0.3806}-0.0090+0.0093). TOI-172 b is one of the few known massive giant planets on a highly eccentric short-period orbit. Future study of the atmosphere of this planet and its system architecture offer opportunities to understand the formation and evolution of similar systems
- …