25 research outputs found

    Electrical Polarization of Titanium Surfacesfor the Enhancement of Osteoblast Differentiation

    Get PDF
    Electrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. Bioelectromagnetics © 2013 Wiley Periodicals, IncElectrical stimulation has been used clinically to promote bone regeneration in cases of fractures with delayed union or nonunion, with several in vitro and in vivo reports suggesting its beneficial effects on bone formation. However, the use of electrical stimulation of titanium (Ti) implants to enhance osseointegration is less understood, in part because of the few in vitro models that attempt to represent the in vivo environment. In this article, the design of a new in vitro system that allows direct electrical stimulation of osteoblasts through their Ti substrates without the flow of exogenous currents through the media is presented, and the effect of applied electrical polarization on osteoblast differentiation and local factor production was evaluated. A custom-made polycarbonate tissue culture plate was designed to allow electrical connections directly underneath Ti disks placed inside the wells, which were supplied with electrical polarization ranging from 100 to 500 mV to stimulate MG63 osteoblasts. Our results show that electrical polarization applied directly through Ti substrates on which the cells are growing in the absence of applied electrical currents may increase osteoblast differentiation and local factor production in a voltage-dependent manner. Bioelectromagnetics © 2013 Wiley Periodicals, In

    Rational SOFC material design: new advances and tools

    Get PDF
    Solid oxide fuel cells (SOFCs) offer great prospects for the most efficient and cost-effective utilization of a wide variety of fuels. However, their commercialization hinges on the rational design of low cost materials with exceptional functionalities. This article highlights some recent progress in probing and mapping surface species and incipient phases relevant to electrode reactions using in situ Raman spectroscopy, synchrotron based x-ray analysis, and multi-scale modeling of charge and mass transport. The combination of in situ characterization and multi-scale modeling is imperative to unraveling the mechanisms of chemical and energy transformation: a vital step for the rational design of next generation SOFC materials.open443

    Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives

    No full text
    The urgency for clean and secure energy has stimulated a global resurgence in searching for advanced electrical energy storage systems. For now and the foreseeable future, batteries remain the most promising electrical energy storage systems for many applications, from portable electronics to emerging technologies such as electric vehicles and smart grids, by potentially offering significantly improved performance, energy efficiencies, reliability, and energy security while also permitting a drastic reduction in fuel consumption and emissions. The energy and power storage characteristics of batteries critically impact the commercial viability of these emerging technologies. For example, the realization of electric vehicles hinges on the availability of batteries with significantly improved energy and power density, durability, and reduced cost. Further, the design, performance, portability, and innovation of many portable electronics are limited severely by the size, power, and cycle life of the existing batteries. Creation of nanostructured electrode materials represents one of the most attractive strategies to dramatically enhance battery performance, including capacity, rate capability, cycling life, and safety. This review aims at providing the reader with an understanding of the critical scientific challenges facing the development of advanced batteries, various unique attributes of nanostructures or nano-architectures applicable to lithium-ion and lithium-air batteries, the latest developments in novel synthesis and fabrication procedures, the unique capabilities of some powerful, in situ characterization techniques vital to unraveling the mechanisms of charge and mass transport processes associated with battery performance, and the outlook for future-generation batteries that exploit nanoscale materials for significantly improved performance to meet the ever-increasing demands of emerging technologies.close15813

    Layer-by-Layer Evolution of Structure, Strain, and Activity for the Oxygen Evolution Reaction in Graphene-Templated Pt Monolayers

    No full text
    In this study, we explore the dimensional aspect of structure-driven surface properties of metal monolayers grown on a graphene/Au template. Here, surface limited redox replacement (SLRR) is used to provide precise layer-by-layer growth of Pt monolayers on graphene. We find that after a few iterations of SLRR, fully wetted 4–5 monolayer Pt films can be grown on graphene. Incorporating graphene at the Pt–Au interface modifies the growth mechanism, charge transfers, equilibrium interatomic distances, and associated strain of the synthesized Pt monolayers. We find that a single layer of sandwiched graphene is able to induce a 3.5% compressive strain on the Pt adlayer grown on it, and as a result, catalytic activity is increased due to a greater areal density of the Pt layers beyond face-centered-cubic close packing. At the same time, the sandwiched graphene does not obstruct vicinity effects of near-surface electron exchange between the substrate Au and adlayers Pt. X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) techniques are used to examine charge mediation across the Pt-graphene-Au junction and the local atomic arrangement as a function of the Pt adlayer dimension. Cyclic voltammetry (CV) and the oxygen reduction reaction (ORR) are used as probes to examine the electrochemically active area of Pt monolayers and catalyst activity, respectively. Results show that the inserted graphene monolayer results in increased activity for the Pt due to a graphene-induced compressive strain, as well as a higher resistance against loss of the catalytically active Pt surface

    Epitaxial and atomically thin graphene–metal hybrid catalyst films : the dual role of graphene as the support and the chemically-transparent protective cap

    No full text
    In this study, we demonstrate dual roles for graphene, as both a platform for large-area, fully-wetted growth of two-dimensional Pt films that are one monolayer to several multilayers thick, while also serving as a ‘chemically transparent’ barrier to catalytic deactivation wherein graphene does not restrict the access of the reactants but does block Pt from dissolution or agglomeration. Using these architectures, we show that it is possible to simultaneously achieve enhanced catalytic activity and unprecedented stability, retaining full activity beyond 1000 cycles, for the canonical oxygen reduction reaction (ORR). Using high resolution TEM, AFM, X-ray photoemission/absorption spectroscopy (XPS/XAS), Raman, and electrochemical methods, we show that, due to intimate graphene–Pt epitaxial contact, Pt_ML/GR hybrid architectures are able to induce a compressive strain on the supported Pt adlayer and increase catalytic activity for ORR. With no appreciable Pt loss or agglomeration observed with the GR/Pt_ML catalysts after 1000 ORR cycles, our results open the door to using similar graphene-templated/graphene-capped hybrid catalysts as means to improve catalyst lifetime without a necessary compromise to their activity. More broadly, the epitaxial growth made possible by the room-temperature, wetted synthesis approach, should allow for efficient transfer of charge, strain, phonons and photons, impacting not just catalysis, but also electronic, thermoelectric and optical materials

    Contiguous and atomically thin Pt film with supra‐bulk behavior through graphene‐imposed epitaxy

    No full text
    The nature of the atomic configuration and the bonding within epitaxial Pt-graphene films is investigated. Graphene-templated monolayer/few-multilayers of Pt, synthesized as contiguous 2D films by room temperature electrochemical methods, is shown to exhibit a stable {100} structure in the 1–2 layer range. The fundamental question being investigated is whether surface Pt atoms rendered in these 2D architectures are as stable as those of their bulk Pt counterparts. Unsurprisingly, a single layer Pt on the graphene (Pt_1ML/GR) shows much larger Pt dissociation energy (−7.51 eV) than does an isolated Pt atom on graphene. However, the dissociation energy from Pt_1ML/GR is similar to that of bulk Pt(100), −7.77 eV, while in bi-layer Pt on the graphene (Pt_2ML/GR), this energy changes to −8.63 eV, surpassing its bulk counterpart. At Pt_2ML/GR, the dissociation energy also slightly surpasses that of bulk Pt(111). Bulk-like stability of atomically thin Pt–graphene results from a combination of interplanar PtC covalent bonding and inter/intraplanar metallic bonding. This unprecedented stability is also accompanied by a metal-like presence of electronic states at the Fermi level. Such atomically thin metal-graphene architectures can be a new stable platform for synthesizing 2D metallic films with various applications in catalysis, sensing, and electronics
    corecore