11 research outputs found
Continuification-based control of large multiagent systems in a ring
In this paper, we propose a method to control large-scale multiagent systems
swarming in a ring. Specifically, we use a continuification-based approach that
transforms the microscopic, agent-level description of the system dynamics into
a macroscopic, continuum-level representation, which we employ to synthesize a
control action towards a desired distribution of the agents. The
continuum-level control action is then discretized at the agent-level in order
to practically implement it. To confirm the effectiveness and the robustness of
the proposed approach, we complement theoretical derivations with a series of
numerical simulations
Solvation-Driven Actuation of Anion-Exchange Membranes
Ion-exchange membranes, conventionally utilized in separation processes of electrolyte solutions, are electroactive polymers that display a unique coupling between electrochemistry and mechanics. Previous experimental studies have demonstrated the possibility of actuating cation-exchange membranes in salt solution through the application of a remote external electric field. The use of anion-exchange membranes as contactless actuators, however, has never been documented and little is known about the physics of their actuation. Here, it is reported for the first time the possibility of contactless actuating anion-exchange membranes in salt solutions; such an actuation is mediated by the selection of anions in the external salt solution and the membrane. Actuation is attributed to the physical phenomenon of solvation, the interaction between ions and solvent in solution. Contrary to previous studies with cation-exchange membranes, the results show that anion-exchange membranes consistently bend toward the anode. The integration of anion-exchange and cation-exchange membranes in composites promises innovative programmable contactless actuators, with applications in underwater robotics and biomedical engineering
On structural theories for ionic polymer metal composites: balancing between accuracy and simplicity
Ionic polymer metal composites (IPMCs) are soft electroactive materials that are finding increasing use as actuators in several engineering domains, where there is a need of large compliance and low activation voltage. Similar to traditional sandwich structures, an IPMC comprises a hydrated ionomer core that is sandwiched by two stiffer electrodes. The application of a voltage across the electrodes drives charge migration within the ionomer, which, in turn, contributes to the development of an eigenstress, associated with osmotic pressure and Maxwell stress. Critical to IPMC actuation is the variation of the eigenstress through the thickness of the ionomer, which is responsible for strain localization at the ionomer-electrode interfaces. Despite considerable progress in the development of reliable continuum theories and finite element tools, accurate structural theories that could beget physical insight into the inner workings of IPMC actuation are lacking. Here, we seek to bridge this gap by contributing a principled methodology to structural modeling of IPMC actuation. Our approach begins with the study of the IPMC electrochemistry through the method of matched asymptotic expansions, which yields a semi-analytical expression for the eigenstress as a function of the applied voltage. Hence, we establish a total potential energy that accounts for the strain energy of the ionomer, the strain energy of the electrodes, and the work performed by the eigenstress. By projecting the IPMC kinematics on select beam-like representation and imposing the stationarity of the total potential energy, we formulate rigorous structural theories for IPMC actuation. Not only do we examine classical low-order and
higher-order beam theories, but we also propose enriched theories that account for strain localization near the electrodes. The accuracy of these theories is assessed through comparison with finite element simulations on a plane-strain problem of non-uniform bending. Our results indicate that an enriched Euler-Bernoulli beam theory, with three independent field variables, is successful in capturing the main features of IPMC actuation at a limited computational cost
On structural models for ionic polymer metal composites
Ionic polymer metal composites (IPMCs) are a class of soft electroactive polymers. IPMCs comprise a soft ionic polymer core, on which two stiff metal electrodes are plated. These active materials exhibit large bend- ing upon the application of a small driving voltage across their electrodes, in air or in aqueous environments. In a recent work, we presented compelling theoretical and numerical evidence suggesting that ionic polymer membranes exhibit complex multiaxial deformations neglected by reduced-order structural models. Where most beam theories (including Euler-Bernoulli, Timoshenko, and most higher-order shear deformation models) would suggest vanishing through-the-thickness deformation, we discover the onset of localized deformation that rever- berates into axial stretching. Building upon this effort, here we investigate the role of the electrodes and shear on multiaxial deformations of IPMCs. We establish a novel structural theory for IPMCs, based on the Euler- Bernoulli kinematics enriched with the through-the-thickness deformation in the ionic polymer, computed from a Saint-Venant-like problem for uniform bending. While considering boundary conditions that elicit non-uniform bending, we compare the results of this model against classical Euler-Bernoulli beam theory without enrichment and finite element simulations, encapsulating the nonlinear response of the material. We demonstrate that our theory can predict the macroscopic displacement of the IPMC, along with the localized deformation in the ionic polymer at the interface with the electrodes, which are not captured by the classical Euler-Bernoulli beam theory. This work paves the way to the development of more sophisticated structural theories for IPMCs and analogous active materials, affording an accurate description of deformations at a limited computational cost
Detecting hidden states in stochastic dynamical systems
Inferring the number of states of a stochastic system from partial measurements is a fundamental problem in physics, for which methodological tools remain scarce. It is sometimes difficult to distinguish the stochastic dynamical states from measurements, deceiving us into incorrect models and flawed understanding of natural phenomena. Here, we propose a model-free statistical framework, grounded in network and control theory, to estimate the number of states of a stochastic system from perceptible dynamics. The framework extends previous techniques for deterministic systems, based on the rank of ancillary matrices. We show applications of our approach to a variety of physics domains, such as statistical mechanics, biophysics, physical chemistry, and epidemiology
Multifunctional nylon filaments for simultaneous ultra-violet light and strain sensing
Webbings are critical load-bearing components that are frequently exposed to severe environments. To date, sensing techniques for applied strain and ultra-violet (UV) irradiation on webbings are still lacking. Here, we put forward a class of multifunctional filaments to bridge this technical gap. Multifunctional filaments are fabricated by attaching functional materials to the filaments’ surfaces through a pressurized coating process. UV-sensitivity is accomplished by a layer of photochromic materials coated on the filament. Upon UV irradiation, the photochromic filaments demonstrate a rich color variation that could support UV sensing. The optical responses of the photochromic filaments are elucidated by a mathematical model based on the photochemistry of the underlying chemical reactions. Strain-sensitivity is realized by a layer of photonic crystals coated on the filament. An applied strain modulates the closely packed nano-structures of the photonic crystals, leading to a shift in the filament color. We demonstrate that by incorporating photochromic materials and photonic crystals on the same filament, it is possible to accomplish simultaneous UV and strain sensing. The proposed filaments could be embedded in webbings to enable noninvasive monitoring of their integrity
Catégories, classification, complexité, consensus… Autour des travaux de Jean-Pierre Barthélemy
Virtual reality as a means to explore assistive technologies for the visually impaired
Visual impairment represents a significant health and economic burden affecting 596 million globally. The incidence of visual impairment is expected to double by 2050 as our population ages. Independent navigation is challenging for persons with visual impairment, as they often rely on non-visual sensory signals to find the optimal route. In this context, electronic travel aids are promising solutions that can be used for obstacle detection and/or route guidance. However, electronic travel aids have limitations such as low uptake and limited training that restrict their widespread use. Here, we present a virtual reality platform for testing, refining, and training with electronic travel aids. We demonstrate the viability on an electronic travel aid developed in-house, consist of a wearable haptic feedback device. We designed an experiment in which participants donned the electronic travel aid and performed a virtual task while experiencing a simulation of three different visual impairments: age-related macular degeneration, diabetic retinopathy, and glaucoma. Our experiments indicate that our electronic travel aid significantly improves the completion time for all the three visual impairments and reduces the number of collisions for diabetic retinopathy and glaucoma. Overall, the combination of virtual reality and electronic travel aid may have a beneficial role on mobility rehabilitation of persons with visual impairment, by allowing early-phase testing of electronic travel aid prototypes in safe, realistic, and controllable settings. Author summary Testing electronic travel aids under development is an outstanding research area, due to the rapid growth in the number of people with visual impairment. For decades, different technologies have been employed to improve the mobility of persons with visual impairment, but suitable and easy-to-use solutions have not yet been established. In this study, we propose the use of virtual reality for early-phase testing of electronic travel aids in safe, realistic, and controllable settings. We demonstrate the approach using an haptic feedback device developed in-house in the form of a belt. Our device can be simply wear by a user, providing free hands and real-time operation. The approach offers the combined possibility of designing highly realistic, urban environments and of simulating different forms of visual impairment on healthy subjects. Our integrated wearable electronic travel aid/virtual reality system establishes a novel assistive framework to mitigate the consequences of visual impairment. We envision this framework could improve training, reduce rehabilitation, and abate societal costs, while creating an engaging and compelling experience for persons with visual impairment
Virtual reality as a means to explore assistive technologies for the visually impaired.
Visual impairment represents a significant health and economic burden affecting 596 million globally. The incidence of visual impairment is expected to double by 2050 as our population ages. Independent navigation is challenging for persons with visual impairment, as they often rely on non-visual sensory signals to find the optimal route. In this context, electronic travel aids are promising solutions that can be used for obstacle detection and/or route guidance. However, electronic travel aids have limitations such as low uptake and limited training that restrict their widespread use. Here, we present a virtual reality platform for testing, refining, and training with electronic travel aids. We demonstrate the viability on an electronic travel aid developed in-house, consist of a wearable haptic feedback device. We designed an experiment in which participants donned the electronic travel aid and performed a virtual task while experiencing a simulation of three different visual impairments: age-related macular degeneration, diabetic retinopathy, and glaucoma. Our experiments indicate that our electronic travel aid significantly improves the completion time for all the three visual impairments and reduces the number of collisions for diabetic retinopathy and glaucoma. Overall, the combination of virtual reality and electronic travel aid may have a beneficial role on mobility rehabilitation of persons with visual impairment, by allowing early-phase testing of electronic travel aid prototypes in safe, realistic, and controllable settings