90 research outputs found
Decoherence in Quantum Walks on the Hypercube
We study a natural notion of decoherence on quantum random walks over the
hypercube. We prove that in this model there is a decoherence threshold beneath
which the essential properties of the hypercubic quantum walk, such as linear
mixing times, are preserved. Beyond the threshold, we prove that the walks
behave like their classical counterparts.Comment: 7 pages, 3 figures; v2:corrected typos in references; v3:clarified
section 2.1; v4:added references, expanded introduction; v5: final journal
versio
Realizing Exactly Solvable SU(N) Magnets with Thermal Atoms
We show that thermal fermionic alkaline-earth atoms in a flat-bottom trap
allow one to robustly implement a spin model displaying two symmetries: the
symmetry that permutes atoms occupying different vibrational levels of
the trap and the SU() symmetry associated with nuclear spin states. The
high symmetry makes the model exactly solvable, which, in turn, enables the
analytic study of dynamical processes such as spin diffusion in this SU()
system. We also show how to use this system to generate entangled states that
allow for Heisenberg-limited metrology. This highly symmetric spin model should
be experimentally realizable even when the vibrational levels are occupied
according to a high-temperature thermal or an arbitrary non-thermal
distribution.Comment: 12 pages, 5 figures (including supplemental materials
Unforgeable Quantum Encryption
We study the problem of encrypting and authenticating quantum data in the
presence of adversaries making adaptive chosen plaintext and chosen ciphertext
queries. Classically, security games use string copying and comparison to
detect adversarial cheating in such scenarios. Quantumly, this approach would
violate no-cloning. We develop new techniques to overcome this problem: we use
entanglement to detect cheating, and rely on recent results for characterizing
quantum encryption schemes. We give definitions for (i.) ciphertext
unforgeability , (ii.) indistinguishability under adaptive chosen-ciphertext
attack, and (iii.) authenticated encryption. The restriction of each definition
to the classical setting is at least as strong as the corresponding classical
notion: (i) implies INT-CTXT, (ii) implies IND-CCA2, and (iii) implies AE. All
of our new notions also imply QIND-CPA privacy. Combining one-time
authentication and classical pseudorandomness, we construct schemes for each of
these new quantum security notions, and provide several separation examples.
Along the way, we also give a new definition of one-time quantum authentication
which, unlike all previous approaches, authenticates ciphertexts rather than
plaintexts.Comment: 22+2 pages, 1 figure. v3: error in the definition of QIND-CCA2 fixed,
some proofs related to QIND-CCA2 clarifie
Institutional framework for quality and safety assurance of aquaculture products in Bosni And Herzegovina
One of the major characteristics of Bosnia and Herzegovina (B&H) aquaculture production is its long tradition. However, the war
that happened in B&H (1992-1995) resulted in destruction of the most of the production infrastructure. Since then, modern !sh production
and processing facilities have been reestablished and trade in !sh and !sh products has recommenced. Further expansion of
the B&H aquaculture has been o"cially identi!ed as an important source of overall agriculture development, as well as the key sector
able to ful!ll the international, particularly the European Union (EU) requirements for trade, faster than other sectors in B&H agriculture.
During the negotiation of export license to the EU, the proper authorities, in particular the State Veterinary O"ce of Bosnia and
Herzegovina (SVO) of the Ministry of Foreign Trade and Economic Relations (MoFTER), and other stakeholders identi!ed the lack of
capacity in ful!lling some of the EU requirements on aquatic animal health management and food safety issues. In order to overcome
the problem, the SVO and the MoFTER asked for FAO assistance, which resulted in o"cial approval of the FAO project “Strengthening
capacity on aquaculture health management in Bosnia and Herzegovina”. In this paper authors present institutional framework for quality and safety assurance of aquaculture products in B&H as a part of mentioned problems
On quantum chosen-ciphertext attacks and learning with errors
Quantum computing is a significant threat to classical public-key cryptography. In strong “quantum access” security models, numerous symmetric-key cryptosystems are also vulnerable. We consider classical encryption in a model which grants the adversary quantum oracle access to encryption and decryption, but where the latter is restricted to non-adaptive (i.e., pre-challenge) queries only. We define this model formally using appropriate notions of ciphertext indistinguishability and semantic security (which are equivalent by standard arguments) and call it QCCA1 in analogy to the classical CCA1 security model. Using a bound on quantum random-access codes, we show that the standard PRF-based encryption schemes are QCCA1-secure when instantiated with quantum-secure primitives. We then revisit standard IND-CPA-secure Learning with Errors (LWE) encryption and show that leaking just one quantum decryption query (and no other queries or leakage of any kind) allows the adversary to recover the full secret key with constant success probability. In the classical setting, by contrast, recovering the key requires a linear number of decryption queries. The algorithm at the core of our attack is a (large-modulus version of) the well-known Bernstein-Vazirani algorithm. We emphasize that our results should not be interpreted as a weakness of these cryptosystems in their stated security setting (i.e., post-quantum chosen-plaintext secrecy). Rather, our results mean that, if these cryptosystems are exposed to chosen-ciphertext attacks (e.g., as a result of deployment in an inappropriate real-world setting) then quantum attacks are even more devastating than classical ones
On non-adaptive quantum chosen-ciphertext attacks and Learning with Errors
Large-scale quantum computing is a significant threat to classical public-key cryptography. In strong “quantum access” security models, numerous symmetric-key cryptosystems are also vulnerable. We consider classical encryption in a model which grants the adversary quantum oracle access to encryption and decryption, but where the latter is restricted to non-adaptive (i.e., pre-challenge) queries only. We define this model formally using appropriate notions of
Recommended from our members
Extending the Role of Computational Fluid Dynamics in Screw Machines
Previous publications show that computational fluid dynamics (CFD) can be readily used for the flow prediction and analysis of screw compressors. Several case studies are presented in this article to show the scope and applicability of such methods. These include solid–fluid interaction in screw compressors, prediction of flow generated noise in screw machines, cavitation modelling in gear pumps, and flow in multiphase pumps for oil and gas industry. Numerical grids for all these cases were generated by the authors using an in-house grid generator, while the CFD calculations were performed with a variety of commercially available CFD codes.
In order to validate the accuracy of the CFD calculations, an extended test programme was carried out using laser Doppler velocimetry to measure the mean and fluctuating velocity distribution in screw compressor flow domains. The measurement results are then compared with the CFD simulations. The results confirm the viability of the developed techniques.
It is shown in this publication that the flexibility of the developed method creates further opportunities for a broader use of CFD for analysis of twin screw machines in a range of new applications
Approximating Turaev-Viro 3-manifold invariants is universal for quantum computation
The Turaev-Viro invariants are scalar topological invariants of compact,
orientable 3-manifolds. We give a quantum algorithm for additively
approximating Turaev-Viro invariants of a manifold presented by a Heegaard
splitting. The algorithm is motivated by the relationship between topological
quantum computers and (2+1)-D topological quantum field theories. Its accuracy
is shown to be nontrivial, as the same algorithm, after efficient classical
preprocessing, can solve any problem efficiently decidable by a quantum
computer. Thus approximating certain Turaev-Viro invariants of manifolds
presented by Heegaard splittings is a universal problem for quantum
computation. This establishes a novel relation between the task of
distinguishing non-homeomorphic 3-manifolds and the power of a general quantum
computer.Comment: 4 pages, 3 figure
Quantum-secure message authentication via blind-unforgeability
Formulating and designing unforgeable authentication of classical messages in
the presence of quantum adversaries has been a challenge, as the familiar
classical notions of unforgeability do not directly translate into meaningful
notions in the quantum setting. A particular difficulty is how to fairly
capture the notion of "predicting an unqueried value" when the adversary can
query in quantum superposition. In this work, we uncover serious shortcomings
in existing approaches, and propose a new definition. We then support its
viability by a number of constructions and characterizations. Specifically, we
demonstrate a function which is secure according to the existing definition by
Boneh and Zhandry, but is clearly vulnerable to a quantum forgery attack,
whereby a query supported only on inputs that start with 0 divulges the value
of the function on an input that starts with 1. We then propose a new
definition, which we call "blind-unforgeability" (or BU.) This notion matches
"intuitive unpredictability" in all examples studied thus far. It defines a
function to be predictable if there exists an adversary which can use
"partially blinded" oracle access to predict values in the blinded region. Our
definition (BU) coincides with standard unpredictability (EUF-CMA) in the
classical-query setting. We show that quantum-secure pseudorandom functions are
BU-secure MACs. In addition, we show that BU satisfies a composition property
(Hash-and-MAC) using "Bernoulli-preserving" hash functions, a new notion which
may be of independent interest. Finally, we show that BU is amenable to
security reductions by giving a precise bound on the extent to which quantum
algorithms can deviate from their usual behavior due to the blinding in the BU
security experiment.Comment: 23+9 pages, v3: published version, with one theorem statement in the
summary of results correcte
- …