62 research outputs found

    Structural and optical behaviors of 2D-layered molybdenum disulfide thin film:Experimental and ab-initio insights

    Get PDF
    The two-dimensional (2D) layered molybdenum disulfide (MoS2) material represents a nominee potent for optoelectronic devices application. In this research work, the experimental characterizations of 2D- MoS2 thin films are reported in terms of various microscopic and spectroscopic techniques. The synthesized MoS2 thin films are grown by employing the pulsed laser deposition (PLD) procedure on SiO2/Si substrates. In order to monitor the deposition rates of ablated films, the buffer argon-gas pressures are varied during the pulsed laser deposition at substrate temperature of 700 °C. The field emission scanning electron microscopy and atomic force microscopy analyzes revealed a change in the surface morphology of MoS2 films when the buffer Ar-gas pressure is varied between 0 and 100 mTorr. For all samples, a 2H-phase is revealed from X-ray diffraction patterns, indicating a reflection (2θ) around 14.85°. By varying the deposition pressure of laser-ablated MoS2 films, the X-ray photoelectron spectroscopy divulged the chemical compositional elements and valence states of Mo and S on the surface of MS2 films with low density of defects. Analysis of the photoluminescence spectroscopy illustrated emission bands spanning from the visible (Vis) to near-infrared (NIR) regimes in the deposition pressures range ~ 0–100 mTorr. This is mainly owing to the change in the recombination of electron–hole pairs and charge transfer between the deposited MoS2 films and SiO2 substrate surface under various buffer gas pressures. Additionally, first-principles electronic structure calculations are performed to qualitatively examine the effect of native point-defect species (sulfur-monovacancy and sulfur-divacancy defects) on the electronic structure and optical properties of 2D- MoS2 sheets. It is unveiled that the variation of compositional sulfur-vacancy defect in MoS2 monolayer creates an in–gap defect levels above the valence states, leading to an acceptor character. Importantly, the enhancement in the optical absorption spectra divulged a shift in the optical gap from Vis-NIR window with the increase of sulfur vacancy contents in MoS2 single-layer. The identification of intrinsic point defects may be beneficial for photovoltaic energy conversion at higher wavelengths by designing next generation 2D-semiconductors, which could be of vital significance for growing 2D layers and multilayers into practical technologies

    Postgraduate Students’ Attitudes Towards the Social and Economic Factors Affecting the Emergence of Anomie

    Get PDF
    This study aimed at identifying the attitudes of postgraduate students in Jordanian universities towards the social factors affecting the emergence of anomie in Jordanian society. The method used was a descriptive analytical approach. The study sample consisted of 273 postgraduate students in five public Jordanian universities enrolled in the second semester of the academic year (2018/ 2019) for the degrees of higher diploma, master’s degree, and doctorate. The study sample was selected using the simple random way. The study used a questionnaire which consisted of (24) items that represent the social dimension affecting the emergence of anomie in Jordanian society. The study results showed that there is a high-impact level for the social factors on the emergence of anomie in Jordanian society from the perspective of postgraduate students in Jordanian universities. The results also revealed that there are statistically significant differences between the mean responses for the study sample individuals towards the social factors affecting the emergence of anomie in Jordanian society due to the variables of monthly income, age, marital status, faculty, religion, job status, while there are no statistically significant differences between the mean responses for the study sample individuals towards the social factors affecting the emergence of anomie in Jordanian society due to the variables of gender and educational qualification. Based on the results, the study concludes with recommendations for further research

    Thin-Film LSCs Based on PMMA Nanohybrid Coatings: Device Optimization and Outdoor Performance

    Get PDF
    This study concerns the design optimization of thin-film luminescent solar concentrators (TLSCs) based on polymethylmethacrylate (PMMA)/silica nanohybrid films doped with coumarin dyestuffs specialized in coloring plastics. Two designs of TLSCs had been prepared and characterized. The first consists of a transparent nanohybrid layer coated on a fluorescent PMMA substrate. The second design is the ordinary configuration in which fluorescent nanohybrid layer is coated on a transparent PMMA substrate. The investigation of the spectral properties and efficiency parameters recommended the best solar energy conversion efficiency for the second design. The outdoor performance of optimized TLSC was also evaluated under clear sky conditions of Riyadh city, and the hourly values of the optical efficiency, ηopt, were calculated for one year. The best performance was achieved in summer since the short circuit current for PV cell was doubled after being attached to TLSC and the value of ηopt reached 40% which is higher than other values recorded before due to the abundant solar energy potential in the Arabian Peninsula

    The Synthesis of NiO/TiO 2

    Get PDF
    In this work, a heterojunction based on p-type NiO/n-type TiO2 nanostructures has been prepared on the fluorine doped tin oxide (FTO) glass substrate by hydrothermal method. Scanning electron microscopy (SEM) and X-Ray diffraction techniques were used for the morphological and crystalline arrays characterization. The X-ray photoelectron spectroscopy was employed to determine the valence-band offset (VBO) of the NiO/TiO2 heterojunction prepared on FTO glass substrate. The core levels of Ni 2p and Ti 2p were utilized to align the valence-band offset of p-type NiO/n-type TiO2 heterojunction. The valence band offset was found to be ∼0.41 eV and the conduction band was calculated about ∼0.91 eV. The ratio of conduction band offset and the valence-band offset was found to be 2.21

    Giant Self-Kerr Nonlinearity in the Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid Systems Under Low-Intensity Light Irradiance

    No full text
    Hybrid nanocomposites can provide a promising platform for integrated optics. Optical nonlinearity can significantly widen the range of applications of such structures. In the present paper, a theoretical investigation is carried out by solving the density matrix equations derived for a metal nanoparticles-graphene nanodisks-quantum dots hybrid system interacting with weak probe and strong control fields, in the steady state. We derive analytical expressions for linear and third-order nonlinear susceptibilities of the probe field. A giant self-Kerr nonlinear index of refraction is obtained in the optical region with relatively low light intensity. The optical absorption spectrum of the system demonstrates electromagnetically induced transparency and amplification without population inversion in the linear optical response arising from the negative real part of the polarizabilities for the plasmonic components at the energy of the localized surface plasmon resonance of the graphene nanodisks induced by the probe field. We find that the self-Kerr nonlinear optical properties of the system can be controlled by the geometrical features of the system, the size of metal nanoparticles and the strength of the control field. The controllable self-Kerr nonlinearities of hybrid nanocomposites can be employed in many interesting applications of modern integrated optics devices allowing for high nonlinearity with relatively low light intensity

    A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser

    No full text
    Active nanoplasmonics have recently led to the emergence of many promising applications. One of them is the spaser (surface plasmons amplification by stimulated emission of radiation) that has been shown to generate coherent and intense fields of selected surface plasmon modes that are strongly localized in the nanoscale. We propose a novel nanospaser composed of a metal nanoparticles-graphene nanodisks hybrid plasmonic system as its resonator and a quantum dots cascade stack as its gain medium. We derive the plasmonic fields induced by pulsed excitation through the use of the effective medium theory. Based on the density matrix approach and by solving the Lindblad quantum master equation, we analyze the ultrafast dynamics of the spaser associated with coherent amplified plasmonic fields. The intensity of the plasmonic field is significantly affected by the width of the metallic contact and the time duration of the laser pulse used to launch the surface plasmons. The proposed nanospaser shows an extremely low spasing threshold and operates in the mid-infrared region that has received much attention due to its wide biomedical, chemical and telecommunication applications

    Spectral Properties of PMMA Films Doped by Perylene Dyestuffs for Photoselective Greenhouse Cladding Applications

    No full text
    Luminescent polymethylmethacrylate (PMMA) films were prepared by the solvent-casting technique from polymer solution doped with different concentrations of red perylene dyestuffs (KREMER 94720 and KREMER 94739). The effect of the dye concentration on the structure and spectroscopic properties was studied using X-ray diffraction (XRD), transmission electron microscope (TEM) optical absorption, and fluorescence spectroscopy. The optimum dye concentration of photoselective PMMA films was determined by the fluorescence spectroscopy measurements and showed the best emission properties for the doping concentration 10−3 wt % of the investigated dyes. The accelerated photostability tests showed promising stability of the prepared films towards terrestrial solar ultraviolet radiation (UVA). The results endorsed a promising application of the investigated films in photoselective greenhouse cladding applications as the optimized film fluoresces at the action spectra of special chlorophyll a

    Effect of Urea on the Morphology of Co3O4 Nanostructures and Their Application for Potentiometric Glucose Biosensor

    No full text
    In this study, an effect of different concentrations of urea on the morphology of cobalt oxide (Co3O4) nanostructures was investigated. The Co3O4 nanostructures are fabricated on gold coated glass substrate by the hydrothermal method. The morphological and structural characterization was performed by scanning electron microscopy, and X-ray diffraction techniques. The Co3O4 nanostructures exhibit morphology of flowers-like and have comprised on nanowires due to the increasing amount of urea. The nanostructures were highly dense on the substrate and possess a good crystalline quality. The Co3O4 nanostructures were successfully used for the development of a sensitive glucose biosensor. The presented glucose biosensor detected a wide range of glucose concentrations from 1 x 10(-6) M to 1 x 10(-2) M with sensitivity of a -56.85 mV/decade and indicated a fast response time of less than 10 s. This performance could be attributed to the heterogeneous catalysis effect at glucose oxidase enzyme, nanoflowers, and nanowires interfaces, which have enhanced the electron transfer process on the electrode surface. Moreover, the reproducibility, repeatability, stability and selectivity were also investigated. All the obtained results indicate the potential use of the developed glucose sensor for monitoring of glucose concentrations at drugs, human serum and food industry related samples
    • …
    corecore