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In this work, a heterojunction based on p-type NiO/n-type TiO
2
nanostructures has been prepared on the fluorine doped tin oxide

(FTO) glass substrate by hydrothermal method. Scanning electron microscopy (SEM) and X-Ray diffraction techniques were used
for the morphological and crystalline arrays characterization. The X-ray photoelectron spectroscopy was employed to determine
the valence-band offset (VBO) of the NiO/TiO

2
heterojunction prepared on FTO glass substrate.The core levels of Ni 2p and Ti 2p

were utilized to align the valence-band offset of p-type NiO/n-type TiO
2
heterojunction. The valence band offset was found to be

∼0.41 eV and the conduction band was calculated about ∼0.91 eV. The ratio of conduction band offset and the valence-band offset
was found to be 2.21.

1. Introduction

Recently, the fabrication and the engineering of nanostruc-
tures based on metal oxides have drawn effective attention of
the researchers due to their specific electronic and optoelec-
tronic features andmore practical applications in the industry
and technology [1]. Among the various metal oxides, the
nanostructures of titanium dioxide (TiO

2
) are more popular

because of their uniqueness and attractive properties in
optics, electronics, photochemistry, and biology in addition
to its usability in the fabrication of photovoltaic devices [2–
4], lithium ion batteries [5], dye-sensitized solar cells [6,
7], and photocatalysts [8–15]. Different methods have been
used to enhance the photocatalysts properties of titanium
dioxide such as TiO

2
-carbonhybrids anddoping of TiO

2
with

metals and nonmetals has also significant contribution on the
photocatalysts properties of titanium dioxide nanomaterial
[10–12].

Several growth techniques have been used for the syn-
thesis of one dimensional TiO

2
nanostructures such as

hydrothermal [16], template synthesis [17, 18], electrochem-
ical etching [19, 20], chemical vapor deposition [21], and
sol-gel process [22, 23]. Among above mentioned methods,
the hydrothermal technique is highly promising because
of its low temperature, simple, cost effectiveness, and the
environment friendly advantages.

Besides titanium dioxide, nickel oxide (NiO) is p-type
semiconductor material and is widely used in different
applications such as transparent conductive films [24], elec-
trochromic devices [25], as a potential candidate in the chem-
ical sensors [26, 27]. NiO exhibits a wide bandgap of 3.6–
4.0 eV at room temperature; thus,NiO is considered transpar-
ent in the visible light region.Moreover, NiO is largely used as
a cocatalyst with different n-type semiconductors due its high
p-type concentration, high hole mobility, and low cost [28].
The existence of NiO enhances the separation of electron and
hole pairs via electric junction field and also promotes the
interfacial charge transfer [29–31]. NiO nanostructures can
be synthesized by sputtering [32], chemical vapor deposition
[33, 34], hydrothermal method [27], and the sol-gel method
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Figure 1: (a)The SEM image of pure TiO
2
nanorods, (b) SEM image of pure NiO nanostructures, (c) SEM image of heterostructures of p-type

NiO/n-type TiO
2
nanostructures, and (d) XRD of the composite nanostructures.

[35, 36]. The hydrothermal method for the synthesis of NiO
nanostructures is relatively more favourable due to its benign
features and simplicity.

After surveying the literature it is known that the valence-
band offset (VBO) of NiO/ZnO heterojunction has been
investigated by few researchers. The growth pattern in their
research was as follows: in some cases NiO was used as
substrate and ZnO as the epitaxial layer [37, 38]. However
in several cases NiO/ZnO based light emitting diodes, ZnO
was used as substrate and NiO as the epitaxial layer [39]. The
valence-band offset of many heterojunctions determined by
XPS is closely linked to the process of growth of heterostruc-
tures [40]. To date there is no report about the determination
of valence-band offset of NiO/TiO

2
heterostructures.

In the present work, the fabrication and the design of
TiO
2
and NiO heterostructures are followed by hydrother-

mal method. Moreover, the valence-band offset (VBO) of
NiO/TiO

2
heterojunction is measured by XPS technique.The

structural characterization of fabricated heterostructures was
determined by scanning electron microscopy (SEM) and X-
ray diffraction (XRD) techniques.

2. Experimental Section

The growth process of the presented p-n junction based
on TiO

2
and NiO nanostructures on the fluorine doped

tin oxide (FTO) glass substrate by hydrothermal method

was as follows. Firstly, a commercially available and cleaned
FTO substrate was used for the synthesis of TiO

2
and NiO

nanostructures. In a typical process 1mL of TTIP, 20mL
of 37% hydrochloric acid, and 40mL of deionized water
were mixed at constant stirring for 30 minutes. The growth
solution was transferred into Teflon vessel of 125mL capacity
and it was sealed in autoclave and kept in preheated oven
at 110∘C for 12 hours. Afterwards, the TiO

2
nanostructures

grown FTO substrate was washed with the deionized water
and dried at room temperature. NiO nanostructures were
grown on the TiO

2
nanostructures by hydrothermal method

using equimolar concentration of (0.1M) nickel chloride
hexahydrate and hexamethylenetetramine and the growth
solution was letf at 95∘C for 4-6 hours in preheated electric
oven. After the completion of growth time, the heterostruc-
tures were washed with the deionized water and dried
with the flow of nitrogen gas at room temperature. Then
heterostructures were annealed at 450∘C for the complete
conversion of Ni(OH)

2
nanostructures into NiO crystalline

phase. The structural characterization was performed by
scanning electron microscopy and X-ray diffraction and the
core levels and valence-band (VB) spectra of the prepared
sample were measured by X-ray photoelectron spectrometer
(XPS,ThermoESCALAB250) using a 1486.6 eVAlK𝛼source.
All XPS spectra were measured by the C 1 s peak (284.8 eV)
as a reference substance in order to compensate the charge
effect.
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Figure 2: The XPS measurement for the calculation of valence-band offset of the developed heterojunction of p-type NiO/n-type TiO
2

nanostructures, (a) Ni 2p spectrum of pure NiO, (b) Ti 2p spectrum of pure TiO
2
, (c) Ni 2p spectrum of heterostructures, and (d) Ti 2p

spectrum of heterostructures.

3. Results and Discussion

3.1. The Structural Characterization of p-Type NiO/n-Type
TiO
2
Heterostructures. A typical SEM image of TiO

2
nanos-

tructures grown on FTO glass substrate by hydrothermal
growth technique is shown in Figure 1(a). It can be seen
that nanostructures are dense and perpendicular to the
substrate.The average diameter and length of nanostructures
are 100 nm and 500 nm, respectively. Figure 1(b) shows the
SEM image of NiO nanostructures and it can be observed
that the nanostructures are like a porous structure. Figure 1(c)
shows the composite structures of NiO/TiO

2
nanostructures

and from the presented image it is clear that almost top
surface of TiO

2
nanostructures is fully covered with the

nanostructures of NiO.
Figure 1(d) shows the diffraction pattern of NiO/TiO

2

nanostructures grown on the FTO glass substrate at room
temperature. All the diffraction peaks could be assigned to

rutile phase of TiO
2
and well match to the JCPDS (card

number 211276). The intense (002) peak reflects that the
preferred orientation of TiO

2
nanorods is along the (001)

direction. However, some peaks of NiO are also shown in
Figure 1(d) and it can be seen that the sample is composed
of NiO and TiO

2
nanostructures. Some diffraction peaks also

appeared for FTO glass substrates which are indicated by star
sign.

3.2. The Calculation of Band Offset by XPS Measurement.
Figure 2 shows the core level (CL) spectrum of spin-orbit
splitting of Ti 2p and Ni 2p peaks. The CL spectrum of
Ni 2p 3/2 is represented by Figure 2(a) and two dominant
peaks are found at 854.13 eV and 855.78 eV which are mainly
concerned the Ni–O linkages. Figure 2(b) shows that the Ti
2p 3/2 peak at 458.3±0.1 eV is indexed to the Ti–O bond and
the peak at 464.0±0.1 eV is assigned to the Ti 2p 1/2 oxidation
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Figure 3: (a) VB spectrum of NiO, (b) VB spectrum of TiO
2
, (c) O 1 s spectrum of NiO, and (d) O 1 s spectrum of TiO

2
.

state [41–43]. Both measured both peaks are symmetric and
the FWHM of Ti 2p 3/2 is found to be 1.1 eV that is matching
with the reported values, and it is attributed to the defect
free TiO

2
synthesized by sol-gel method (110) [42, 43]. The

nickel 2p and Ti 2p peaks in the NiO/TiO
2
heterostructures

are shown in Figures 2(c) and 2(d). It has been indicated
that the measured peaks are symmetric relative to that of
information obtained from the pure samples of NiO and
TiO
2
, the change in Ni 2p peak is observed from the value

0.3 eV to the binding energy value of 853.839 eV and the Ti 2p
3/2 is changed from the 0.056 to 459.16 eV. The valence-band
(VB) spectrum of NiO and TiO

2
is shown in Figures 3(a) and

3(b). The valence-band maximum (VBM) value of 0.73 eV
for NiO is extrapolated from the VB spectrum using linear
fitting. The VB spectrum for TiO

2
was measured by similar a

method as for NiO and is shown in Figure 3(b) and the VBM
value of 0.73 eVwas observed. ForO 1 s in theNiO sample, the
less intense peak at a binding energy of 529.47 eV corresponds

to the O 1 s peak of NiO. The very intense shoulder peak at
533.3 eV is assigned to the surface adsorbed oxygen as shown
in Figure 3(c). The O 1 s spectrum of Ti–O is comprised
on the two apparent peaks, one at 530.48 eV is attributed
to the Ti–O bonds and the other at 532.21 eV because of
the surface adsorbed species as shown in Figure 3(d). The
reported method [44] was used for the measurement of
valence-band offset of NiO/TiO

2
heterojunctions by applying

the following formula:

Δ𝐸

𝑉
= (𝐸

NiO
Ni 2p − 𝐸

NiO
VBM) − (𝐸

TiO
Ti 2p − 𝐸

TiO
VBM) + Δ𝐸CL. (1)

Here (𝐸NiONi 2p–𝐸
NiO
VBM) is the energy difference between Ni

2p and VBM in the pure NiO nanostructures, (𝐸TiOTi 2p –𝐸
TiO
VBM)

is the energy difference between the Ti 2p and the VBM in
the TiO

2
, and Δ𝐸CL = (𝐸

TiO
Ti 2p −𝐸

NiO
Ni 2p) is the energy difference

between theTi 2p andNi 2p core levels (CLs) in theNiO/TiO
2
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heterostructures. Hence the measured valance-band offset
of developed heterojunction is found to be ∼0.41 eV. The
conduction-band offset of NiO/TiO

2
heterojunction was

measured by the following formula:

Δ𝐸

𝐶
= (𝐸

TiO
band gap − 𝐸

NiO
band gap) − Δ𝐸𝑉. (2)

The respective band gap for the NiO is 3.7 eV and 3.2 eV
for TiO

2
, respectively, at room temperature; thus the calcu-

lated Δ𝐸
𝐶
is found to be ∼0.91 eV. However the schematic

diagram of the band alignment is depicted in Figure 4. It can
be observed that a type-II band alignment is produced at the
junction of NiO/TiO

2
heterojunction. The observed ratio of

CBO and VBO Δ𝐸
𝐶
/Δ𝐸
𝑉
is 2.21.

4. Conclusion

In this study, the hydrothermal approach was used for the
development of p-type NiO/n-type TiO

2
heterojunction on

the FTO glass substrate. The SEM and XRD techniques were
used for the morphological and structural characterization.
TheXPS technique was used for themeasurement of valence-
band offset and the observed band offset was found to be
∼0.41 eV and the conduction band of ∼0.91 eV was deter-
mined.The ratio of conduction band and valence-band offset
was found to be 2.21.
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