9 research outputs found
Imatinib reduces non-alcoholic fatty liver disease in obese mice by targeting inflammatory and lipogenic pathways in macrophages and liver
Macrophages have been recognized as key players in non-alcoholic fatty liver disease (NAFLD). Our aim was to assess whether pharmacological attenuation of macrophages can be achieved by imatinib, an anti-leukemia drug with known anti-inflammatory and antidiabetic properties, and how this impact on NAFLD. We analyzed the pro- and anti-inflammatory gene expression of murine macrophages and human monocytes in vitro in the presence or absence of imatinib. In a time-resolved study, we characterized metabolic disease manifestations such as hepatic steatosis, systemic and adipose tissue inflammation as well as lipid and glucose metabolism in obese mice at one and three months of imatinib treatment. Our results showed that imatinib lowered pro-inflammatory markers in murine macrophages and human monocytes in vitro. In obese mice, imatinib reduced TNFα-gene expression in peritoneal and liver macrophages and systemic lipid levels at one month. This was followed by decreased hepatic steatosis, systemic and adipose tissue inflammation and increased insulin sensitivity after three months. As the transcription factor sterol regulatory element-binding protein (SREBP) links lipid metabolism to the innate immune response, we assessed the gene expression of SREBPs and their target genes, which was indeed downregulated in the liver and partially in peritoneal macrophages. In conclusion, targeting both inflammatory and lipogenic pathways in macrophages and liver as shown by imatinib could represent an attractive novel therapeutic strategy for patients with NAFLD
Diesel Exhaust Particle (DEP)-induced glucose intolerance is driven by an intestinal innate immune response and NLRP3 activation in mice
BACKGROUND
We previously found that air pollution particles reaching the gastrointestinal tract elicit gut inflammation as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. This inflammatory response was associated with beta-cell dysfunction and glucose intolerance. So far, it remains unclear whether gut inflammatory changes upon oral air pollution exposure are causally linked to the development of diabetes. Hence, our aim was to assess the role of immune cells in mediating glucose intolerance instigated by orally administered air pollutants.
METHODS
To assess immune-mediated mechanisms underlying air pollution-induced glucose intolerance, we administered diesel exhaust particles (DEP; NIST 1650b, 12 ”g five days/week) or phosphate-buffered saline (PBS) via gavage for up to 10 months to wild-type mice and mice with genetic or pharmacological depletion of innate or adaptive immune cells. We performed unbiased RNA-sequencing of intestinal macrophages to elucidate signaling pathways that could be pharmacologically targeted and applied an in vitro approach to confirm these pathways.
RESULTS
Oral exposure to air pollution particles induced an interferon and inflammatory signature in colon macrophages together with a decrease of CCR2 anti-inflammatory/resident macrophages. Depletion of macrophages, NLRP3 or IL-1ÎČ protected mice from air pollution-induced glucose intolerance. On the contrary, Rag2-/- mice lacking adaptive immune cells developed pronounced gut inflammation and glucose intolerance upon oral DEP exposure.
CONCLUSION
In mice, oral exposure to air pollution particles triggers an immune-mediated response in intestinal macrophages that contributes to the development of a diabetes-like phenotype. These findings point towards new pharmacologic targets in diabetes instigated by air pollution particles
Lung versus gut exposure to air pollution particles differentially affect metabolic health in mice
BACKGROUND
Air pollution has emerged as an unexpected risk factor for diabetes. However, the mechanism behind remains ill-defined. So far, the lung has been considered as the main target organ of air pollution. In contrast, the gut has received little scientific attention. Since air pollution particles can reach the gut after mucociliary clearance from the lungs and through contaminated food, our aim was to assess whether exposure deposition of air pollution particles in the lung or the gut drive metabolic dysfunction in mice.
METHODS
To study the effects of gut versus lung exposure, we exposed mice on standard diet to diesel exhaust particles (DEP; NIST 1650b), particulate matter (PM; NIST 1649b) or phosphate-buffered saline by either intratracheal instillation (30 ”g 2 days/week) or gavage (12 ”g 5 days/week) over at least 3 months (total dose of 60 ”g/week for both administration routes, equivalent to a daily inhalation exposure in humans of 160 ”g/m PM) and monitored metabolic parameters and tissue changes. Additionally, we tested the impact of the exposure route in a "prestressed" condition (high-fat diet (HFD) and streptozotocin (STZ)).
RESULTS
Mice on standard diet exposed to particulate air pollutants by intratracheal instillation developed lung inflammation. While both lung and gut exposure resulted in increased liver lipids, glucose intolerance and impaired insulin secretion was only observed in mice exposed to particles by gavage. Gavage with DEP created an inflammatory milieu in the gut as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. In contrast, liver and adipose inflammation markers were not increased. Beta-cell secretory capacity was impaired on a functional level, most likely induced by the inflammatory milieu in the gut, and not due to beta-cell loss. The differential metabolic effects of lung and gut exposures were confirmed in a "prestressed" HFD/STZ model.
CONCLUSIONS
We conclude that separate lung and gut exposures to air pollution particles lead to distinct metabolic outcomes in mice. Both exposure routes elevate liver lipids, while gut exposure to particulate air pollutants specifically impairs beta-cell secretory capacity, potentially instigated by an inflammatory milieu in the gut
Imatinib reduces non-alcoholic fatty liver disease in obese mice by targeting inflammatory and lipogenic pathways in macrophages and liver
Macrophages have been recognized as key players in non-alcoholic fatty liver disease (NAFLD). Our aim was to assess whether pharmacological attenuation of macrophages can be achieved by imatinib, an anti-leukemia drug with known anti-inflammatory and anti-diabetic properties, and how this impacts on NAFLD. We analyzed the pro- and anti-inflammatory gene expression of murine macrophages and human monocytes in vitro in the presence or absence of imatinib. In a time-resolved study, we characterized metabolic disease manifestations such as hepatic steatosis, systemic and adipose tissue inflammation as well as lipid and glucose metabolism in obese mice at one and three months of imatinib treatment. Our results showed that imatinib lowered pro-inflammatory markers in murine macrophages and human monocytes in vitro. In obese mice, imatinib reduced TNFα-gene expression in peritoneal and liver macrophages and systemic lipid levels at one month. This was followed by decreased hepatic steatosis, systemic and adipose tissue inflammation and increased insulin sensitivity after three months. As the transcription factor sterol regulatory element-binding protein (SREBP) links lipid metabolism to the innate immune response, we assessed the gene expression of SREBPs and their target genes, which was indeed downregulated in the liver and partially in peritoneal macrophages. In conclusion, targeting both inflammatory and lipogenic pathways in macrophages and liver as shown by imatinib could represent an attractive novel therapeutic strategy for patients with NAFLD
Diesel Exhaust Particle (DEP)-induced glucose intolerance is driven by an intestinal innate immune response and NLRP3 activation in mice
Abstract Background We previously found that air pollution particles reaching the gastrointestinal tract elicit gut inflammation as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. This inflammatory response was associated with beta-cell dysfunction and glucose intolerance. So far, it remains unclear whether gut inflammatory changes upon oral air pollution exposure are causally linked to the development of diabetes. Hence, our aim was to assess the role of immune cells in mediating glucose intolerance instigated by orally administered air pollutants. Methods To assess immune-mediated mechanisms underlying air pollution-induced glucose intolerance, we administered diesel exhaust particles (DEP; NIST 1650b, 12 ”g five days/week) or phosphate-buffered saline (PBS) via gavage for up to 10 months to wild-type mice and mice with genetic or pharmacological depletion of innate or adaptive immune cells. We performed unbiased RNA-sequencing of intestinal macrophages to elucidate signaling pathways that could be pharmacologically targeted and applied an in vitro approach to confirm these pathways. Results Oral exposure to air pollution particles induced an interferon and inflammatory signature in colon macrophages together with a decrease of CCR2â anti-inflammatory/resident macrophages. Depletion of macrophages, NLRP3 or IL-1ÎČ protected mice from air pollution-induced glucose intolerance. On the contrary, Rag2-/- mice lacking adaptive immune cells developed pronounced gut inflammation and glucose intolerance upon oral DEP exposure. Conclusion In mice, oral exposure to air pollution particles triggers an immune-mediated response in intestinal macrophages that contributes to the development of a diabetes-like phenotype. These findings point towards new pharmacologic targets in diabetes instigated by air pollution particles
Roux-en-Y gastric bypass with a long versus a short biliopancreatic limb improves weight loss and glycemic control in obese mice.
BACKGROUND
Roux-en-Y gastric bypass (RYGB) results in long-term weight loss and reduced obesity related co-morbidities. However, little is known about how the lengths of the biliopancreatic limb (BPL), the alimentary limb (AL), and the common limb (CL) affect weight loss and glucose metabolism.
OBJECTIVES
Our aim was to establish a RYGB obese mouse model with defined proportions of the AL and BPL and a constant CL to assess the effects on weight loss,glucose metabolism, and obesity-related co-morbidities.
SETTING
In vivo mouse study.
METHODS
Six-week-old male C57BL/6J mice fed with a high-fat diet (HFD) underwent bariatric surgery with defined BPL lengths: a very long, long, and short BPL (35%, 25%, and 15% of total bowel length), or sham surgery. The length of the AL was adjusted to achieve the same CL length. Mice were analyzed for weight loss, glycemic control, and obesity-related co-morbidities.
RESULTS
Mice undergoing RYGB surgery with a very long BPL had excessive weight loss and mortality and were therefore not further analyzed. Mice with a long BPL showed a significantly increased total weight loss when compared with mice with a short BPL. In addition, a long BPL improved glucose tolerance, particularly early after surgery. A long BPL was also associated with lower triglyceride levels. Resolution of hepatic steatosis and adipose tissue inflammation was, however, not statistically significant. Of note, bariatric surgery dramatically changed gut microbiota, regardless of limb length.
CONCLUSION
In obese mice, a long BPL results in enhanced weight loss and improved glucose tolerance. These findings could potentially be translated to humans by tailoring the BPL length according to body weight, obesity-related co-morbidities, and total bowel length of an individual patient
Targeting colonic macrophages improves glycemic control in high-fat diet-induced obesity
International audienceThe obesity epidemic continues to worsen worldwide. However, the mechanisms initiating glucose dysregulation in obesity remain poorly understood. We assessed the role that colonic macrophage subpopulations play in glucose homeostasis in mice fed a high-fat diet (HFD). Concurrent with glucose intolerance, pro-inflammatory/monocyte-derived colonic macrophages increased in mice fed a HFD. A link between macrophage numbers and glycemia was established by pharmacological dose-dependent ablation of macrophages. In particular, colon-specific macrophage depletion by intrarectal clodronate liposomes improved glucose tolerance, insulin sensitivity, and insulin secretion capacity. Colonic macrophage activation upon HFD was characterized by an interferon response and a change in mitochondrial metabolism, which converged in mTOR as a common regulator. Colon-specific mTOR inhibition reduced pro-inflammatory macrophages and ameliorated insulin secretion capacity, similar to colon-specific macrophage depletion, but did not affect insulin sensitivity. Thus, pharmacological targeting of colonic macrophages could become a potential therapy in obesity to improve glycemic control
Targeting colonic macrophages improves glycemic control in high-fat diet-induced obesity
The obesity epidemic continues to worsen worldwide. However, the mechanisms initiating glucose dysregulation in obesity remain poorly understood. We assessed the role that colonic macrophage subpopulations play in glucose homeostasis in mice fed a high-fat diet (HFD). Concurrent with glucose intolerance, pro-inflammatory/monocyte-derived colonic macrophages increased in mice fed a HFD. A link between macrophage numbers and glycemia was established by pharmacological dose-dependent ablation of macrophages. In particular, colon-specific macrophage depletion by intrarectal clodronate liposomes improved glucose tolerance, insulin sensitivity, and insulin secretion capacity. Colonic macrophage activation upon HFD was characterized by an interferon response and a change in mitochondrial metabolism, which converged in mTOR as a common regulator. Colon-specific mTOR inhibition reduced pro-inflammatory macrophages and ameliorated insulin secretion capacity, similar to colon-specific macrophage depletion, but did not affect insulin sensitivity. Thus, pharmacological targeting of colonic macrophages could become a potential therapy in obesity to improve glycemic control
Single cell atlas of human gastric muscle immune cells and macrophage-driven changes in idiopathic gastroparesis
Summary: Gastrointestinal immune cells, particularly muscularis macrophages (MM) interact with the enteric nervous system and influence gastrointestinal motility. Here we determine the human gastric muscle immunome and its changes in patients with idiopathic gastroparesis (IG). Single cell sequencing was performed on 26,000 CD45+ cells obtained from the gastric tissue of 20 subjects. We demonstrate 11 immune cell clusters with TÂ cells being most abundant followed by myeloid cells. The proportions of cells belonging to the 11 clusters were similar between IG and controls. However, 9/11 clusters showed 578-11,429 differentially expressed genes. In IG, MM had decreased expression of tissue-protective and microglial genes and increased the expression of monocyte trafficking and stromal activating genes. Furthermore, in IG, IL12 mediated JAK-STAT signaling involved in the activation of tissue-resident macrophages and Eph-ephrin signaling involved in monocyte chemotaxis were upregulated. Patients with IG had a greater abundance of monocyte-like cells. These data further link immune dysregulation to the pathophysiology of gastroparesis