33 research outputs found

    Intravenous infusions of glucose stimulate key lipogenic enzymes in adipose tissue of dairy cows in a dose-dependent manner

    Get PDF
    The present study was investigated whether increasing amounts of glucose supply have a stimulatory effect on the mRNA abundance and activity of key lipogenic enzymes in adipose tissue of midlactation dairy cows. Twelve Holstein-Friesian dairy cows in midlactation were cannulated in the jugular vein and infused with either a 40% glucose solution (n=6) or saline (n=6). For glucose infusion cows, the infusion dose increased by 1.25%/d relative to the initial net energy for lactation (NEL) requirement until a maximum dose equating to a surplus of 30% NEL was reached on d 24. This maximum dose was maintained until d 28 and stopped thereafter (between d 29-32). Cows in the saline infusion group received an equivalent volume of 0.9% saline solution. Samples of subcutaneous adipose tissue were taken on d 0, 8, 16, 24, and 32 when surplus glucose reached 0, 10, 20, and 30% of the NEL requirement, respectively. The mRNA abundance of fatty acid synthase, cytoplasmic acetyl- coenzyme A synthetase, cytoplasmic glycerol 3-phosphate dehydrogenase-1, and glucose 6-phosphate dehydrogenase showed linear treatment × dose interactions with increasing mRNA abundance with increasing glucose dose. The increased mRNA abundance was paralleled by a linear treatment × dose interaction for fatty acid synthase and acetyl-coenzyme A synthetase enzymatic activities. The mRNA abundance of ATP-citrate lyase showed a tendency for linear treatment × dose interaction with increasing mRNA abundance with increasing glucose dose. The mRNA abundance of all tested enzymes, as well as the activities of fatty acid synthase and acetyl-coenzyme A synthetase, correlated with plasma glucose and serum insulin levels. In a multiple regression model, the predictive value of insulin was dominant over that of glucose. In conclusion, gradual increases in glucose supply upregulate key lipogenic enzymes in adipose tissue of midlactating dairy cows with linear dose dependency. Insulin appears to be critically involved in this regulation. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved

    Dietary Crocin is Protective in Pancreatic Cancer while Reducing Radiation-Induced Hepatic Oxidative Damage.

    Full text link
    Pancreatic cancer is one of the fatal causes of global cancer-related deaths. Although surgery and chemotherapy are standard treatment options, post-treatment outcomes often end in a poor prognosis. In the present study, we investigated anti-pancreatic cancer and amelioration of radiation-induced oxidative damage by crocin. Crocin is a carotenoid isolated from the dietary herb saffron, a prospect for novel leads as an anti-cancer agent. Crocin significantly reduced cell viability of BXPC3 and Capan-2 by triggering caspase signaling via the downregulation of Bcl-2. It modulated the expression of cell cycle signaling proteins P53, P21, P27, CDK2, c-MYC, Cyt-c and P38. Concomitantly, crocin treatment-induced apoptosis by inducing the release of cytochrome c from mitochondria to cytosol. Microarray analysis of the expression signature of genes induced by crocin showed a substantial number of genes involved in cell signaling pathways and checkpoints (723) are significantly affected by crocin. In mice bearing pancreatic tumors, crocin significantly reduced tumor burden without a change in body weight. Additionally, it showed significant protection against radiation-induced hepatic oxidative damage, reduced the levels of hepatic toxicity and preserved liver morphology. These findings indicate that crocin has a potential role in the treatment, prevention and management of pancreatic cancer

    Dietary Crocin is Protective in Pancreatic Cancer while Reducing Radiation-Induced Hepatic Oxidative Damage

    Get PDF
    Pancreatic cancer is one of the fatal causes of global cancer-related deaths. Although surgery and chemotherapy are standard treatment options, post-treatment outcomes often end in a poor prognosis. In the present study, we investigated anti-pancreatic cancer and amelioration of radiation-induced oxidative damage by crocin. Crocin is a carotenoid isolated from the dietary herb saffron, a prospect for novel leads as an anti-cancer agent. Crocin significantly reduced cell viability of BXPC3 and Capan-2 by triggering caspase signaling via the downregulation of Bcl-2. It modulated the expression of cell cycle signaling proteins P53, P21, P27, CDK2, c-MYC, Cyt-c and P38. Concomitantly, crocin treatment-induced apoptosis by inducing the release of cytochrome c from mitochondria to cytosol. Microarray analysis of the expression signature of genes induced by crocin showed a substantial number of genes involved in cell signaling pathways and checkpoints (723) are significantly affected by crocin. In mice bearing pancreatic tumors, crocin significantly reduced tumor burden without a change in body weight. Additionally, it showed significant protection against radiation-induced hepatic oxidative damage, reduced the levels of hepatic toxicity and preserved liver morphology. These findings indicate that crocin has a potential role in the treatment, prevention and management of pancreatic cancer

    Albumin Nano-Encapsulation of Piceatannol Enhances Its Anticancer Potential in Colon Cancer Via Downregulation of Nuclear p65 and HIF-1 alpha

    Get PDF
    Piceatannol (PIC) is known to have anticancer activity, which has been attributed to its ability to block the proliferation of cancer cells via suppression of the NF-kB signaling pathway. However, its effect on hypoxia-inducible factor (HIF) is not well known in cancer. In this study, PIC was loaded into bovine serum albumin (BSA) by desolvation method as PIC-BSA nanoparticles (NPs). These PIC-BSA nanoparticles were assessed for in vitro cytotoxicity, migration, invasion, and colony formation studies and levels of p65 and HIF-1α. Our results indicate that PIC-BSA NPs were more effective in downregulating the expression of nuclear p65 and HIF-1α in colon cancer cells as compared to free PIC. We also observed a significant reduction in inflammation induced by chemical colitis in mice by PIC-BSA NPs. Furthermore, a significant reduction in tumor size and number of colon tumors was also observed in the murine model of colitis-associated colorectal cancer, when treated with PIC-BSA NPs as compared to free PIC. The overall results indicate that PIC, when formulated as PIC-BSA NPs, enhances its therpautice potential. Our work could prompt further research in using natural anticancer agents as nanoparticels with possiable human clinical trails. This could lead to the development of a new line of safe and effective therapeutics for cancer patients

    Dynamics of Prolyl hydroxylases levels during disease progression in experimental colitis

    Get PDF
    Hypoxia inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitors are shown to be protective in several models of inflammatory bowel disease (IBD). However, these non-selective inhibitors are known to inhibit all the three isoforms of PHD, i.e. PHD-1, PHD-2 and PHD-3. In the present report, we investigated the associated changes in levels of PHDs during the development and recovery of chemically induced colitis in mice. The results indicated that in the experimental model of murine colitis, levels of both, PHD-1 and PHD-2 were found to be increased with the progression of the disease; however, the level of PHD-3 remained the same in group of healthy controls and mice with colitis. Thus, the findings advocated that inhibitors, which inhibited all three isoforms of PHD could not be ideal therapeutics for IBD since PHD-3 is required for normal gut function. Hence, this necessitates the development of new compounds capable of selectively inhibiting PHD-1 and PHD-2 for effective treatment of IBD

    Expression and activity of key hepatic gluconeogenesis enzymes in response to increasing intravenous infusions of glucose in dairy cows

    No full text
    The present study aimed at investigating whether increasing concentrations of glucose supply have a depressive effect on the mRNA abundance and activity of key gluconeogenic enzymes in dairy cows. Twelve Holstein-Friesian dairy cows in mid-lactation were intravenously infused with saline (SI; n = 6) or a 40% glucose solution (GI; n = 6). For GI cows, the infusion dose increased by 1.25%/d relative to the initial NEl requirement until a maximum dose equating to surplus 30% NEl was reached on d 24. Cows receiving SI received an equivalent volume of 0.9% saline solution. Blood samples were taken every 2 d, and liver biopsies were collected every 8 d. A treatment x quadratic dose interaction (P < 0.01) was observed for the concentration of plasma glucose and serum insulin. The interactions were due to positive quadratic responses of the concentrations of glucose and insulin for GI cows, whereas the concentrations of glucose and insulin did not change over time for SI cows. The concentration of β-hydroxybutyric acid (BHBA) and serum urea nitrogen (BUN) responded in a treatment x quadratic dose manner, such that greater decreases (P < 0.01) in BHBA and BUN concentrations were observed for cows receiving GI than SI as the dosage increased. Serum NEFA concentration tended to follow a similar pattern as serum BHBA and BUN; however, the interaction was not significant (P = 0.07). The mRNA abundance of gluconeogenesis enzymes followed a linear treatment x dose interaction (P < 0.05) for only pyruvate carboxylase (PC), which was paralleled by a trend for a linear treatment x dose interaction (P = 0.13) for PC enzyme activity. The least PC expression and activity were observed at the largest glucose dosage. The activity, but not mRNA abundance, of fructose 1,6-bisphosphatase (FBPase) showed treatment x quadratic dose interactions (P < 0.05) with decreasing activity at increasing glucose dose. Activities and expression of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase were not affected (P > 0.25) by treatment. In conclusion, hepatic gluconeogenic enzymes are only moderately affected by slowly increasing glucose supply, including a translational or posttranslational downregulation of FBPase activity and a decrease in the mRNA abundance of PC with possible consequences for PC enzyme activity

    Increasing intravenous infusions of glucose improve body condition but not lactation performance in midlactation dairy cows

    No full text
    The present study was intended to test whether intravenously applied glucose would elicit dose effects on lactation performance similar to those observed after gastrointestinal glucose application. Six midlactation cows received intravenous glucose infusions (GI), increasing by 1.25% of the calculated net energy for lactation (NEL) requirement per day, whereas control cows received volume-equivalent saline infusions (SI). Measurements and samples were taken at surplus glucose dose levels of 0, 10, 20, and 30% of the NEL requirement, respectively. Body weight and backfat thickness increased linearly with increasing glucose dose for cows on GI compared with SI. No differences were observed in daily feed intake, milk energy output, and energy-corrected milk yield between treatments. However, milk protein percentage and yield increased linearly with the dose of glucose infused in the GI group. Although milk lactose was not affected by treatment during the infusion period, milk lactose percentage and yield decreased for GI, but not SI, once infusions ceased. Based on 5 diurnal blood samples, daily mean and maximum concentrations of plasma glucose and serum insulin showed linear increases with increasing GI, whereas their daily minimum concentrations were unaffected. At GI of 30% of the NEL requirement, marked hyperglycemia and hyperinsulinemia were observed at 1600h (i.e., 1h postprandially), coinciding with glucosuria. The revised quantitative insulin-sensitivity check index indicated linear development of insulin resistance for the GI treatment but no such change in SI cows. Glucose infusion decreased daily mean and maximum serum β-hydroxybutyrate and daily minimum nonesterified fatty acid concentrations relative to SI, whereas serum urea nitrogen was only numerically decreased by GI. No changes were observed in the serum activities of γ-glutamyl transferase and aspartate transaminase and in the serum concentrations of bilirubin and macrominerals. However, serum phosphorus concentration increased after withdrawal of GI, but not SI. Only in GI cows did glycogen content increase or tend to increase linearly in the liver and skeletal muscle. In conclusion, midlactation dairy cows on an energy-balanced diet directed intravenously infused glucose predominantly to body fat reserves rather than increasing lactation performance. This may suggest that the metabolic fate of glucose is modified by metabolic signals, hormonal signals, or both from the portal-drained viscera when absorbed from the intestine

    A potential MRI agent and an anticancer drug encapsulated within CPMV virus-like particles.

    Full text link
    Background: Virus nanoparticles have been extensively studied over the past decades for theranostics applications. Viruses are well-characterized, naturally occurring nanoparticles that can be produced in high quantity with a high degree of similarity in both structure and composition. Objectives: The plant virus Cowpea Mosaic Virus (CPMV) has been innovatively used as a nanoscaffold. Utilization of the internal cavity of empty Virus-Like Particles (VLPs) for the inclusion of therapeutics within the capsid has opened many opportunities in drug delivery and imaging applications. Methods: The encapsidation of magnetic materials and anticancer drugs was achieved. SuperscriptCPMV denotes molecules attached to the external surface of CPMV and CPMVSubscript denotes molecules within the interior of the capsid. Results: Here, the generation of novel VLPs incorporating iron-platinum nanoparticles TCPMVFePt and cisplatin (Cis) (TCPMVCis) is reported. TCPMVCis exhibited a cytotoxic IC50 of TCPMVCis on both A549 and MDA-MB-231 cell lines of 1.8 μM and 3.9 μM, respectively after 72 hours of incubation. The TCPMVFePt were prepared as potential MRI contrast agents. Conclusion: Cisplatin loaded VLP (TCPMVCis) is shown to enhance cisplatin cytotoxicity in cancer cell lines with its potency increased by 2.3-folds
    corecore