157 research outputs found
Fabrication of thin film solar cell materials by APCVD
Thin film solar cells are currently being implemented commercially as they reduce the amount of semiconductor material required for each cell when compared to silicon wafers, thereby lowering the cost of production. Currently two direct band gap chalcogenide thin-film technologies, CdTe and CuInGa(S,Se)2 (CIGS), yield the highest reported power conversion efficiencies of 16.5% and 20.3%, respectively. In addition, Cu2ZnSnS4 (CZTS) is one of the most promising chalcogenide thin film photovoltaic absorber materials; with an optimal band gap of about 1.5 eV. More importantly, CZTS consists of abundant and non-toxic elements, so research on CZTS thin-film solar cells has been increasing significantly in recent years. Moreover, Sb2S3 based chalcogenide thin films have been proposed for use in photovoltaic applications. The preparation of chalcogenide thin films solar cells commonly use physical vapour deposition methods including thermal/e-beam evaporation, sputtering, and pulsed laser deposition, electrochemical deposition, spray pyrolysis, solution-based synthesis, followed by the sulfurization or selenization annealing process. In this paper, we report a non-vacuum process, using atmospheric pressure chemical vapour deposition (APCVD), to fabricate chalcogenide thin film solar cell materials as well as transparent conductive oxide (TCO) thin films. The optical, electrical, and structural properties of these materials were characterized by UV-VIS-NIR, four-point probes, SEM, EDX, XRD, Micro-Raman
Strain engineering in graphene by laser irradiation
We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer
Ultra low power consuming thermally stable sulphide materials for resistive and phase change memristive application
The use of conventional chalcogenide alloys in rewritable optical disks and the latest generation of electronic memories (phase change and nano-ionic memories) has provided clear commercial and technological advances for the field of data storage, by virtue of the many well-known attributes, in particular scaling, cycling endurance and speed, that these chalcogenide materials offer. While the switching power and current consumption of established germanium antimony telluride based phase change memory cells are a major factor in chip design in real world applications, the thermal stability and high on-state power consumption of these device can be a major obstacle in the path to full commercialization. In this work we describe our research in material discovery and prototype device fabrication and characterization, which through high throughput screening has demonstrated thermally stable, low current consuming chalcogenides for applications in PCRAM and oxygen doped chalcogenides for RRAM which significantly outperform the current contenders
Crystallisation study of the Cu<sub>2</sub>ZnSnS<sub>4</sub> chalcogenide material for solar applications
Second generation thin-film chalcogenide materials, in particular CuInGa(S,Se)2 (CIGS) and CdTe, have been among the most promising and quickly became commercial candidates for large-scale PV manufacturing. These materials offer stable and efficient (above 10%) photovoltaic modules fabricated by scalable thin-film technologies and cell efficiencies above 20 % (CIGS). Indium-free kesterite-related materials such as Cu2ZnSnS4 have attracted significant research interest due to their similar properties to CIGS. In these materials, indium is replaced with earth-abundant zinc and tin metals. The quaternary semiconductor Cu2ZnSnS4(CZTS) is a relatively new photovoltaic material and is expected to be interesting for environmentally amenable solar cells, as its constituents are nontoxic and abundant in the Earth's crust. The CZTS thin films show p-type conductivity, a band gap of 1.44–1.51 eV that is ideal to achieve the highest solar-cell conversion efficiency, and relatively high optical absorption in the visible light range
Preparation of chalcogenide materials for next generation optoelectronic devices
Chalcogenide materials are finding increasing interest as an active material in next generation optical and electronic devices. There wide range of properties, ranging from photosensitivity, ability to host rare earth ions, electrical conductivity, phase change, exceptional optical non-linearities to name only a few are fueling this interest. Moreover, the ability to synthesize these materials in numerous forms as diverse as 2D monolayers, microspheres, optical fibres, nanowires, thin films as well as bulk glass ingots of over a kilogram in size ensures their application space is vast. We began preparation of chalcogenides, largely based on sulphides, in 1992 and since then have built up an extensive capability for their purification, synthesis and fabrication in various forms. A key aspect of this facility is the ability to process in a flowing atmosphere of hydrogen sulphide which provided the capability of synthesis from elemental, oxide or halide precursors, processing through various chemical vapour deposition reactions as well as post purification.In this talk we describe recent additions to the range of materials we synthesize highlighting transition metal di-chalcogenides for electronic applications, an example of which is shown below, crystalline semiconductors for solar cell applications, ion implanted thin films which provide carrier type reversal, low power phase change memory devices, switchable metamaterial devices as well as traditional chalcogenides glass and optical fibre
Management of Hepatitis C Antiviral Therapy Adverse Effects
Hepatitis C is one of the leading causes of liver disease in the United States, affecting more than 4 million individuals. The current treatment regimen involves pegylated interferon in combination with ribavirin. Although antiviral treatment has been associated with a greater than 50% sustained viral response rate, the adverse effects have proven to be detrimental to quality of life and therapy adherence, and consequently lead to lower sustained viral response rates. This article identifies the most frequently described complications associated with pegylated interferon and ribavirin. The active management of these complications is discussed, including both preventive and empiric treatments
Developing counseling skills through pre-recorded videos and role play: a pre- and post-intervention study in a Pakistani medical school
<p>Abstract</p> <p>Background</p> <p>Interactive methods like role play, recorded video scenarios and objective structured clinical exam (OSCE) are being regularly used to teach and assess communication skills of medical students in the western world. In developing countries however, they are still in the preliminary phases of execution in most institutes. Our study was conducted in a naïve under resourced setup to assess the impact of such teaching methodologies on the counseling skills of medical students.</p> <p>Methods</p> <p>Fifty four 4<sup>th </sup>year MBBS students were identified to be evaluated for communication skills by trained facilitators in a pre-intervention OSCE. The same group of students was given a demonstration of ideal skill level by means of videos and role playing sessions in addition to real life interaction with patients during hospital and community rotations. A post-intervention evaluation was carried out six months later through OSCE and direct observation through structured checklist (DOS) in hospital and community settings. The combined and individual performance levels of these students were analyzed.</p> <p>Results</p> <p>There was a statistically significant difference in the communication skills of students when assessed in the post-intervention OSCE (p = 0.000). Individual post-intervention percentages of study participants displayed improvement as well (n = 45, p = 0.02). No difference was observed between the scores of male and female students when assessed for two specific competencies of antenatal care and breast feeding counseling (p = 0.11). The mean DOS (%) score of 12 randomly selected students was much lower as compared to the post-intervention (%) score but the difference between them was statistically non significant, a result that may have been affected by the small sample size as well as other factors that may come into play in real clinical settings and were not explored in this study (59.41 ± 7.8 against 82.43 ± 22.08, p = 0.88).</p> <p>Conclusions</p> <p>Videos and role play in combination with community and clinical exposure are effective modes of teaching counseling skills to medical students. They can be successfully utilized even in a limited resource setup, as demonstrated by our trial.</p
Phosphorus Is Associated with Coronary Artery Disease in Patients with Preserved Renal Function
High serum phosphorus levels have been associated with mortality and cardiovascular events in patients with chronic kidney disease and in the general population. In addition, high phosphorus levels have been shown to induce vascular calcification and endothelial dysfunction in vitro. The aim of this study was to evaluate the relation of phosphorus and coronary calcification and atherosclerosis in the setting of normal renal function. This was a cross-sectional study involving 290 patients with suspected coronary artery disease and undergoing elective coronary angiography, with a creatinine clearance >60 ml/min/1.73 m2. Coronary artery obstruction was assessed by the Friesinger score and coronary artery calcification by multislice computed tomography. Serum phosphorus was higher in patients with an Agatston score >10 than in those with an Agatston score ≤10 (3.63±0.55 versus 3.49±0.52 mg/dl; p = 0.02). In the patients with Friesinger scores >4, serum phosphorus was higher (3.6±0.5 versus 3.5±0.6 mg/dl, p = 0.04) and median intact fibroblast growth factor 23 was lower (40.3 pg/ml versus 45.7 pg/ml, p = 0.01). Each 0.1-mg/dl higher serum phosphate was associated with a 7.4% higher odds of having a Friesinger score >4 (p = 0.03) and a 6.1% greater risk of having an Agatston score >10 (p = 0.01). Fibroblast growth factor 23 was a negative predictor of Friesinger score (p = 0.002). In conclusion, phosphorus is positively associated with coronary artery calcification and obstruction in patients with suspected coronary artery disease and preserved renal function
Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition
Cognitive dysfunction is a core feature of dementia and a prominent feature in psychiatric disease. As non-redundant regulators of intracellular cAMP gradients, phosphodiesterases (PDE) mediate fundamental aspects of brain function relevant to learning, memory, and
higher cognitive functions. Phosphodiesterase-4B (PDE4B) is an important phosphodiesterase in the hippocampal formation, is a major Disrupted in Schizophrenia 1 (DISC1) binding partner and is itself a risk gene for psychiatric illness. To define the effects of specific inhibition of the PDE4B subtype, we generated mice with a catalytic domain mutant form of PDE4B (Y358C) that has decreased ability to hydrolyze cAMP. Structural modelling predictions of decreased function and impaired binding with DISC1 were confirmed in cell assays. Phenotypic characterization of the PDE4BY358C mice revealed facilitated phosphorylation of CREB, decreased binding to DISC1, and upregulation of DISC1 and β-Arrestin in hippocampus and amygdala. In behavioural assays, PDE4BY358C mice displayed decreased anxiety and increased exploration, as well as cognitive enhancement across several tests of learning and memory, consistent with synaptic changes including enhanced long-term potentiation and impaired depotentiation ex vivo.
PDE4BY358C mice also demonstrated enhanced neurogenesis. Contextual fear memory, though intact at 24 hours, was decreased at 7 days in PDE4BY358C mice, an effect replicated pharmacologically with a non-selective PDE4 inhibitor, implicating cAMP signalling by PDE4B in a very late phase of consolidation. No effect of the PDE4BY358C mutation was observed in the pre-pulse inhibition and forced swim tests. Our data establish specific inhibition of PDE4B as a promising therapeutic approach for disorders of cognition and anxiety, and a putative target for pathological fear memory
Recommended from our members
Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity
The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery
- …