9 research outputs found

    Influencing of solar drying performance by chimney effect

    Get PDF

    Characterizing the morbid genome of ciliopathies

    Get PDF
    Background Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete. Results We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their “mutation load” beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population. Conclusions Our study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies

    Biochemical, Histological, and Ultrastructural Studies of the Protective Role of Vitamin E on Cyclophosphamide-Induced Cardiotoxicity in Male Rats

    No full text
    Background: Cyclophosphamide (CP) (Cytoxan or Endoxan) is an efficient anti-tumor agent, widely used for the treatment of various neoplastic diseases. The study aimed to investigate the protective role of vitamin E (vit E) in improving cardiotoxicity in rats induced by CP. Materials and methods: Forty male Wistar rats were divided randomly into four experimental groups (each consisting of ten rats); the control group was treated with saline. The other three groups were treated with vit E, CP, and the combination of vit E and CP. Serum lipid profiles, enzyme cardiac biomarkers, and cardiac tissue antioxidants were evaluated, as well as histological and ultrastructure investigations. Results: CP-treated rats showed a significant increase in serum levels of cardiac markers (troponin, CK, LDH, AST, and ALT), lipid profiles, a reduction in the antioxidant enzyme activities (CAT, SOD, and GPx), and an elevation in the level of lipid peroxidation (LPO). The increase in the levels of troponin, LDH, AST, ALP, and triglycerides is a predominant indicator of cardiac damage due to the toxic effect of CP. The biochemical changes parallel cardiac injuries such as myocardial infarction, myocarditis, and heart failure. Vitamin E played a pivotal role, as it attenuated most of these changes because of its ability to scavenge free radicals and reduce LPO. In addition, vit E was found to improve the histopathological alterations caused by CP where no evidence of damage was observed in the cardiac architecture, and the cardiac fibers had regained their normal structure with minimal hemorrhage. Conclusions: As a result of its antioxidant activity and its stabilizing impact on the cardiomyocyte membranes, vit E is recommended as a potential candidate in decreasing the damaging effects of CP

    Selenium and nano-selenium in plant nutrition

    No full text

    Selenium in soils under climate change, implication for human health

    No full text
    corecore