6 research outputs found

    Pharmacological properties of the stimulant khat

    No full text

    A Review on Ethnobotanical and Therapeutic Uses of Fenugreek ( Trigonella foenum-graceum

    No full text
    Fenugreek with the scientific name of Trigonella foenum-graceum L and with leaves consisting of 3 small obovate to oblong leaflets is an annual herbaceous plant of the Fabaceae family. It is native to the eastern Mediterranean but is cultivated worldwide. This plant has medicinal alkaloids, steroid compounds, and sapogenins and many uses have been mentioned for this plant in traditional medicine. This plant has been used to ease childbirth, to aid digestion, and as a general tonic to improve metabolism. Trigonelline is considered as the most important metabolite of fenugreek, which is very effective in treating diabetes and decreasing blood cholesterol. Diaszhenin is another important compound in seeds of this plant, which is used in producing medicinal steroids like contraceptive pills. Many studies have been performed on the therapeutic effects and identification of chemical compounds of this plant. In this article, the most important biological effects and reported compounds about fenugreek seed are reviewed and its therapeutic applications are investigated. © 2015, © The Author(s) 2015

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore