59 research outputs found

    Evaluation of structural behavior of externally prestressed segmented bridge with shear key under torsion

    Get PDF
    Externally Prestressed Segmented (EPS) concrete beams are generally used in the construction of bridge structures. External Prestressed technique uses tendons that are placed completely outside the concrete section and attached to the concrete at anchorages and deviators only. Segmented bridge is a bridge built in short sections. Segmented bridge applies smart technique that is a part of an engineering management. EPS bridges are affected by combined stresses i.e., bending, shear, normal, and torsion stresses especially at the segments interface joints. Previous studies on EPS bridges did not include the effect of torsion in the load carrying capacity and other structural behavior. This paper presents an experimental investigation of the structural behavior of EPS bridged under combined bending, shear, normal, and torsion stresses. The aim of this paper is to improve the existing equation to include the effect of torsion in estimating the failure load of EPS bridge. A parametric study was carried out to investigate the effect of different external tendon layouts and different levels of torsion

    Effects of nano-carbon reinforcement on the swelling and shrinkage behaviour of soil

    Get PDF
    In this study, the performance of two types of nanocarbons (NCs), namely carbon nanotubes (CNTs) and carbon nanofibers (CNFs), on the three-dimensional shrinkage and swelling properties of three clayey soils were investigated. The specimens of soil mixed with clay with bentonite contents of 0, 10 and 20% by weight of dry soil. NC contents of 0.05, 0.075, 0.10 and 0.20% were chosen to investigate the influence of different NC types, CNTs and CNFs. All soil specimens were compacted under maximum dry unit weight and optimum water content conditions by using standard compaction tests. The physical and mechanical characteristics of the reinforced samples were then determined. These included the desiccation cracking area, used to determine the crack intensity factor (CIF), as well as the shrinkage and swelling. The CIF for the soil specimens without NCs were higher than the soil specimens with NC additives. These results show that NCs decrease the development of desiccation cracks on the surface of compacted samples. The shrinkage and swelling tests showed that the rate of volume changing of the compacted soil specimens reduced with the increasing of NCs

    Prediction of rockfill materialsโ€™ shear strength using various kernel function-based regression modelsโ€”a comparative perspective

    Get PDF
    The mechanical behavior of the rockfill materials (RFMs) used in a damโ€™s shell must be evaluated for the safe and cost-effective design of embankment dams. However, the characterization of RFMs with specific reference to shear strength is challenging and costly, as the materials may contain particles larger than 500 mm in diameter. This study explores the potential of various kernel function-based Gaussian process regression (GPR) models to predict the shear strength of RFMs. A total of 165 datasets compiled from the literature were selected to train and test the proposed models. Comparing the developed models based on the GPR method shows that the superlative model was the Pearson universal kernel (PUK) model with an R-squared (R2 ) of 0.9806, a correlation coefficient (r) of 0.9903, a mean absolute error (MAE) of 0.0646 MPa, a root mean square error (RMSE) of 0.0965 MPa, a relative absolute error (RAE) of 13.0776%, and a root relative squared error (RRSE) of 14.6311% in the training phase, while it performed equally well in the testing phase, with R2 = 0.9455, r = 0.9724, MAE = 0.1048 MPa, RMSE = 0.1443 MPa, RAE = 21.8554%, and RRSE = 23.6865%. The prediction results of the GPR-PUK model are found to be more accurate and are in good agreement with the actual shear strength of RFMs, thus verifying the feasibility and effectiveness of the model

    Prediction of rockburst intensity grade in deep underground excavation using adaptive boosting classifier

    Get PDF
    Rockburst phenomenon is the primary cause of many fatalities and accidents during deep underground projects constructions. As a result, its prediction at the early design stages plays a significant role in improving safety.(e article describes a newly developed model to predict rockburst intensity grade using Adaptive Boosting (AdaBoost) classifier. A database including 165 rockburst case histories was collected from across the world to achieve a comprehensive representation, in which four key influencing factors such as maximum tangential stress of the excavation boundary, uniaxial compressive strength of rock, tensile rock strength, and elastic energy index were selected as the input variables, and the rockburst intensity grade was selected as the output. (e output of the AdaBoost model is evaluated using statistical parameters including accuracy and Cohenโ€™s kappa index. (e applications for the aforementioned approach for predicting the rockburst intensity grade are compared and discussed. Finally, two real-world applications are used to verify the proposed AdaBoost model. It is found that the prediction results are consistent with the actual conditions of the subsequent construction

    Mechanical properties of concrete containing recycle concrete aggregates and multi-walled carbon nanotubes under static and dynamic stresses

    Get PDF
    The growing demand for natural aggregates in the construction industry has motivated researchers to utilize recycled concrete aggregates (RCA) to preserve the natural resources and provide sustainable structure. However, the use of RCA in concrete applications has revealed defects in performance with low strength and rapid collapse under static and dynamic loads, respectively. Thus, the objective of present research is to improve these properties by using multi-walled carbon nanotubes (MWCNT). This study involves evaluating the fresh and hardened properties of recycled aggregate concrete (RAC) modified with different levels of MWCNT. The study involves RCA (i.e., 0 %, 25 %, 50 %, 75 % and 100 %) as replacement for natural aggregates, and MWCNT (i.e., 0.05 %, 0.1 % and 0.25 %) as weight of cement. The experimental testing consists of 240 specimens prepared from different mixtures. Workability is assessed using slump tests. Mechanical properties including static compressive strength and dynamic impact resistance are evaluated at 7 and 28 days. Experimental results show that incorporating MWCNT at all levels significantly reduces the slump values for all specimens. On the other hand, the compressive strength is increased by adding MWCNT to the concrete samples. The compressive strength of the RAC increased by as much as 70 % when modified with MWCNT. Furthermore, the inclusion of MWCNT is found to significantly increase the impact resistance of RAC specimens with percentage developments reaching approximately 11โ€“508 % and 110โ€“679 % at 7 and 28 days, respectively, at both first crack and failure stages. The dosage of 0.1 % MWCNT is shown to exhibit the highest percentage enhancement in impact resistance among the other nano levels. The failure patterns and cracks propagation are presented as well

    The effect of carbon-nanofiber and hydrated lime on weak soil stability

    Get PDF
    The vast amount of waste cooking oil (WCO) has invited odds effects on the environment when disposed of improperly. Incorporating waste materials into asphalt mixture is common practice these days as it minimizes the amount of waste material as well as improves the performance of the mixture. WCO is known for its natural fluidity characteristics, wherein affecting good cracking performance at low temperature, yet indicate poor rutting resistance at high temperature. Plus, less strength in porous asphalt has worsened the rutting condition. Hence, pretreatment of WCO is suggested before the modification was done. In this study, WCO is being treated with chemical treatment of the transesterification process. Then, the modified binder of 5%, 10%, 15% and 20% untreated and treated WCO were tested with physical testing of penetration and softening point temperature. Later, a similar percentage of untreated and treated WCO were incorporated into porous asphalt mixture to analyze the mechanical performance of Marshall Stability, Flow and Stiffness. The result of porous asphalt mixture with 10% treated WCO showed an improvement in Marshall Stability, Flow and Stiffness. It can be concluded, samples with treated WCO indicated remarkable performance in terms of physical and mechanical evaluation, owing to similar polarity which enhances good interaction bonding that strengthens the asphalt mixture

    Statistical modelling of extreme temperature in Peninsular Malaysia

    Get PDF
    Extreme temperature events bring significant effects on the environment and society. Consequently, investigating the best fit for extreme temperature data is important for hydrological study and event forecasting. The main aim of this study is to determine the best fit probability distribution for monthly and annual extreme temperatures. The maximum temperature data at monthly and annual time scales were obtained from MMD (Malaysia Meteorological department). The temperature data for 40 years were fitted to the 10 probability distributions for each station. The parameters of the distributions were estimated by the maximum likelihood method and L-moment method. Besides, three goodness of fit tests, namely Kolmogorov-Smirnov (K-S), Anderson-Darling (A2) and Chi-Squared Error (CSE) test were applied to evaluate the performances of the distributions. The best fit distribution was selected based on the lowest test scores from the summation of the three goodness of fit tests. The results of this study showed that Generalized Extreme Value distribution was selected as the best-fit distribution, followed by Log-Pearson 3, 3 Parameter Lognormal, Generalized Log Logistic and Gamma distributions. The results of this study can be used as a reference for development planners, agricultural sector, water management agencies in hydrological planning and disaster management

    Physical and mechanical evaluation of porous asphalt incorporated with untreated and treated waste cooking oil

    Get PDF
    The vast amount of waste cooking oil (WCO) has invited odds effects on the environment when disposed of improperly. Incorporating waste materials into asphalt mixture is common practice these days as it minimizes the amount of waste material as well as improves the performance of the mixture. WCO is known for its natural fluidity characteristics, wherein affecting good cracking performance at low temperature, yet indicate poor rutting resistance at high temperature. Plus, less strength in porous asphalt has worsened the rutting condition. Hence, pretreatment of WCO is suggested before the modification was done. In this study, WCO is being treated with chemical treatment of the transesterification process. Then, the modified binder of 5%, 10%, 15% and 20% untreated and treated WCO were tested with physical testing of penetration and softening point temperature. Later, a similar percentage of untreated and treated WCO were incorporated into porous asphalt mixture to analyze the mechanical performance of Marshall Stability, Flow and Stiffness. The result of porous asphalt mixture with 10% treated WCO showed an improvement in Marshall Stability, Flow and Stiffness. It can be concluded, samples with treated WCO indicated remarkable performance in terms of physical and mechanical evaluation, owing to similar polarity which enhances good interaction bonding that strengthens the asphalt mixture
    • โ€ฆ
    corecore