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For the safe and economical construction of embankment dams, the mechanical behaviour of the rockfill materials used in the
dam’s shell must be analyzed. &e characterization of rockfill materials with specified shear strength is difficult and expensive due
to the presence of particles greater than 500mm in diameter. &is work investigates the feasibility of using an extreme gradient
boosting (XGBoost) computing paradigm to estimate the shear strength of rockfill materials. To train and validate the proposed
XGBoost model, a total of 165 databases obtained from the literature are chosen. &e XGBoost model was compared against
support vector machine (SVM), adaptive boosting (AdaBoost), random forest (RF), and K-nearest neighbor (KNN) models
described in the literature. XGBoost beats SVM, RF, AdaBoost, and KNNmodels in terms of performance evaluation metrics such
as coefficient of determination (R2), Nash–Sutcliffe coefficient (NSE), and error in the root mean square ratio (RMSE) to the
standard deviation of the measured data (RSR). &e results demonstrated that the XGBoost model has the highest prediction
performance with (R2 = 0.9707, NSE = 0.9701, and RSR= 0.1729), followed by the SVM model with (R2 = 0.9655, NSE = 0.9639,
and RSR= 0.1899), RF (R2 = 0.9545, NSE= 0.9542, and RSR= 0.2140), the AdaBoost model with (R2 = 0.9390, NSE= 0.9388, and
RSR= 0.2474) and the KNN model with (R2 = 0.6233, NSE = 0.6180, and RSR= 0.6181). A sensitivity analysis has been conducted
to ascertain the impact of each investigated input parameter. &is study demonstrates that the established XGBoost model for
estimating the shear strength of rockfill materials is reliable.

1. Introduction

Rockfill materials (RFM) are commonly used in the con-
struction of high embankment dams in order to harness
natural water resources. RFM is comprised of gravels,
cobbles, and boulders obtained by blasting rock quarries or

natural riverbeds. Material from riverbeds is rounded to
subrounded, and material from quarries is angular to
subangular. Mineral composition, particle size, shape, gra-
dation, individual particle strength, void content, relative
density (RD), and particle surface roughness all influence the
behaviour of these RFMs used in the construction of rockfill
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dams. &erefore, it is essential to comprehend and char-
acterise the behaviour of these materials for the study and
safe construction of rockfill dams.

In engineering practice, the particle size of rockfill
materials ranges from 400 to 600 millimetres and can exceed
1000millimetres. Due to the constraints of laboratory testing
equipment, rockfill materials that exceed the maximum
permissible particle size must be scaled. To determine the
mechanical properties of rockfill materials on-site, analog
simulation is used in laboratory testing to build test spec-
imens with the same internal structure as the prototype
rockfill materials, thus determining the engineering char-
acteristics of the prototype rockfill materials. Several re-
search studies have investigated the behaviour of the RFM
such as Abbas et al. [1], Gupta [2], Venkatachalam [3],
Marsal [4], Mirachi [5], and Honkanadavar and Sharma [6]
and carried out laboratory experiments on different RFMs,
and it was revealed that their stress-strain behaviour is
dependent on the stress level, but nonlinear and inelastic.
&ey also reported that the angle of internal friction in-
creases as the maximum particle size of riverbed RFM in-
creases, while the opposite trend is true for quarry RFM.
Frossard et al. [7] proposed a rational approach for esti-
mating RFM shear strength based on size effects; Honka-
nadavar and Gupta [8] developed a power law for the
relationship between the shear strength parameter and
various riverbed RFM index features due to the difficulty of
conducting large-scale strength testing and defining the
mechanical behaviour of RFMs. Numerous methodologies
have been developed to anticipate the behaviour of such
soils. Large particle size RFM cannot be tested under lab-
oratory circumstances as maximum large-scale shear tests
are time-consuming and complicated, and it is hard to
predict the nonlinear shear strength function without an
analytical method (particle size 1200mm) [8].

Over the last ten years, a newly developed approach
based on machine learning (ML) algorithms has been widely
applied to solve real-world problems, particularly civil en-
gineering. Numerous practical problems have been effec-
tively addressed using ML techniques, paving the way for
many promising opportunities in civil engineering and other
fields such as environmental [9] and geotechnical [10–15]
including prediction of RFM shear strength [16–18]. In this
context, the artificial neural network (ANN) approach is
utilized by Kaunda [16] for estimating RFM shear strength.
Cubist and random forest regression techniques are used by
Zhou et al. [17], and they found that both models are ac-
curate for RFM shear strength estimations than ANN and
traditional regression models. Ahmad et al. [18] used sup-
port vector machine (SVM), random forest (RF), AdaBoost,
and K-nearest neighbor (KNN) algorithms to estimate the
shear strength of RFM and concluded that the SVM model
achieved a better prediction performance compared to the
RF, AdaBoost, and KNN models. &is field, however, is
currently being investigated. &e article aims to provide the
following contributions in the research field:

(i) To evaluate the predictive capacity of the XGBoost
algorithm for the shear strength of RFM

(ii) To compare the proposed model to the reference
models used in the published literature

(iii) Conduct sensitivity analysis to assess the influence
of each input parameter on the RFM’s shear
strength

&e structure of the paper is as follows: &e theory of
extreme gradient boosting is explained in Section 2. Data
collection and correlation analysis are presented in Section 3.
Section 4 explains the performance measurement employed.
Section 5 presents the obtained results and a discussion of
them. Finally, conclusions based on the achieved results are
provided.

2. Extreme Gradient Boosting (XGBoost)

Chen and Guestrin [19] proposed the sophisticated super-
vised technique extreme gradient boosting (XGBoost) under
the gradient boosting framework which has received
widespread recognition in Kaggle machine learning contests
due to its advantages of high efficiency and considerable
flexibility. XGBoost’s loss function adds a regularization
term to the objective function, which helps to smoothen the
final learning weights and avoid over-fitting [19]. It also
optimizes the loss function using first and second-order
gradient statistics. XGBoost also supports row and column
sampling to address this issue in addition to providing
regular terms to prevent over-fitting. As a result of the
parallel and distributed computation, faster model explo-
ration is possible.

&e following is a description of the XGBoost algorithm
[20]: given a dataset with n examples and m features
D � (xi, yi)􏼈 􏼉(|D| � n, xi ∈ Rm, yi ∈ R),K additive functions
will be used to predict the output values of a tree ensemble
model as follows:

􏽢yi � 􏽘
K

k�1
fk xi( 􏼁, fk ∈ F, (1)

where F is the regression trees space. It is calculated as

F � f(x) � ωq(x)􏽮 􏽯 q : R
m⟶ T,ωq ∈ R

T
􏼐 􏼑, (2)

where q represents for the structure of each tree, Trepresents
for the number of leaves in the tree, and fk is a function that
corresponds to an independent tree structure q and leaf
weights ω. To reduce errors of ensemble trees, the objective
function is found in the XGBoost model:

L
(t)

� 􏽘
n

i�1
l yi, 􏽢y

(t−1)
j􏼐 􏼑 + ft xi( 􏼁􏼐 􏼑 +Ω fk( 􏼁, (3)

where l is a differentiable convex objective function to
calculate the error between predicted and measured values;
yi and 􏽢yi are regulated and predicted values, respectively; t
shows the repetitions in order to minimize the errors; andΩ
is the complexity penalized with the regression tree
functions:
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Ω fk( 􏼁 � cT +
1
2
λ‖ω‖

2
, (4)

ω is the vector of the score for the blades, and c the
minimal loss required for the further isolation of a blade
node. λ is the regularization function. In addition, c and λ
are parameters which are able to control the complexity of
the tree, and the regularization term helps to avoid over-
fitting by smoothening the final learnt weights. Taylor ex-
pansion is applied to the objective function in order to
further simplify it as

F � 􏽘
m

i�1
ft xi( 􏼁gi +

1
2

ft xi( ( 􏼁􏼁
2
hi􏼔 􏼕 + cT +

1
2
λ􏽘

T

j�1
ω2

j , (5)

where gi and hi are the first and second derivatives obtained
on the loss function, respectively. More detailed explana-
tions of the XGBoost algorithm can be found in Chen and
Guestrin’s [19] research paper.

3. Dataset Collection and Correlation Analysis

In this study, a database of 165 samples of RFM shear
strength reports was collected from Kaunda [16] and is
presented in Appendix A and Table A1 in supplementary
file. All input parameters that might influence the shear
strength results of RFM were considered. &e included
parameters are D10, D30, D60, and D90, corresponding to the
10%, 30%, 60%, and 90% sieve sizes passing, respectively. Cc
and Cu refer to the curvature uniformity coefficients (Cc),
respectively; FM and GM describe fineness modulus and
gradation modulus, respectively; R represents International
Society of Rock Mechanics (ISRM) hardness rating; UCSmin,
and UCSmax (MPa) signify the uniaxial compression
strengths boundaries (MPa); and c represents the dry unit
weight (kN/m3), while σn is the normal stress (MPa). &e
considered output is the shear strength of RFM (MPa)
(denoted as τ (MPa)).&e summary of the database statistics
is presented in Table 1, which includes the boundary and
standard deviation values of all parameters used in this
study.

Correlation (ρ) was used to verify the intensity of cor-
relation between different parameters (see Figure 1). For a
given pair of random variables (m, n), the following equation
for ρ is used:

ρ(m, n) �
cov(m, n)

σmσn

, (6)

where cov denotes covariance, σm denotes the standard
deviation of m, and σn denotes the standard deviation of n.
|ρ|> 0.8 represents a strong correlation between m and n,
values between 0.3 and 0.8 represents a moderate rela-
tionship, and |ρ|> 0.30 represents a weak relationship [21].
As per Song et al. [22], correlation is considered as “strong”
if |ρ|> 0.8. In the order of strong to weak, the relationships
between input and output parameters are represented in
Figure 1. Consequently, no factors from the estimation
model’s τ were deleted. &e correlation coefficient has a
maximum absolute value of 0.97, as shown in Figure 1.

4. Evaluation and Prediction

To evaluate the predictive capacity of the XGBoost algo-
rithm, we compared it with some other machine learning
methods developed in literature using performance
measures.

4.1. Compared Machine Learning (ML) Methods. &e
XGBoost model was compared with other prediction
methods such as support vector machine, adaptive boosting,
random forest, and K-nearest neighbor proposed in litera-
ture. A brief description of each technique is presented. For a
more in-depth discussion, the reader is referred to the
relevant references.

4.1.1. Support Vector Machine (SVM). &e Support Vector
Machine (SVM) regression technique relies on feature
classification and generates an interclass hyperplane and
minimizes the vector lengths and variance between the
features and the plane. &e SVM is compatible with the
majority of kernel types, including Euclidean, Gaussian,
Exponential, and Dirichlet kernels [23]. &e objective
function for SVM regression contains a coefficient generated
from the cost analysis that aids in determining the flatness of
the created hyperplane [24]. &is allows the user to change
the SVM technique to fit unique datasets.

4.1.2. Adaptive Boosting (AdaBoost). Adaptive Boosting is a
boosting machine learning technique in which strong
learning algorithms augment weak learning algorithms.
AdaBoost must define the number of beginning students (n)
as a parameter [25]. During the training phase, AdaBoost
develops learners with low accuracy who improve based on
their predecessors [26]. Using this method, the AdaBoost
dynamically modifies the training weight based on the
performance of the fundamental learning algorithms [27].

4.1.3. Random Forest (RF). Random Forests are ensemble
models that use many decision trees as base-learners to
obtain more precise outcomes. Individual trees are gener-
ated from training data using random parameters as their
roots and nodes using the bootstrap sampling method [28].
Multiple decision trees are more stable than a single tree
because they reduce overfitting and average the outcomes
[26]. &e number of trees in the forest at each binary node,
the number of randomly selected predictors, and the lowest
number of observations at the nodes of the trees are the three
primary parameters for random forests [29].

4.1.4. K-nearest Neighbor (KNN). &e supervised KNN is a
machine learning algorithm that can be used to tackle both
classification and regression problems. In regression prob-
lems, the input data set is comprised of k that is most similar
to the training data sets utilized in the highlighted set. &e
outcome of KNN regression is the object’s characteristic
value, which is the mean value of k’s nearest neighbors. As
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the distance metric, a parameter such as Euclidean or
Mahalanobis distance can be utilized to locate the k of a data
point [30].

4.2. Evaluation Measures. &ree quantitative statistical in-
dices, i.e., coefficient of determination (R2), error in the root
mean square ratio to the measured data standard deviation
(RSR), and Nash–Sutcliffe coefficient (NSE) were employed
to validate and compare the XGBoost model. &e following
equations characterise the supplied indices:

R
2

� 1 −
􏽐

n
i�1 yi − 􏽢yi( 􏼁

2

􏽐
n
i�1 yi − 􏽢y( 􏼁

2 , (7)

RSR �

������������

􏽐
n
i�1 yi − 􏽢yi( 􏼁

2
􏽱

������������

􏽐
n
i�1 yi − y( 􏼁

2
􏽱 , (8)

NSE � 1 −
􏽐

n
i�1 yi − 􏽢yi( 􏼁

2

􏽐
n
i�1 yi − y( 􏼁

2 , (9)

where n is the total number of data; yi and 􏽢yi are the actual
shear strength and the predicted shear strength, respectively;
and y is the mean of the actual shear strength.

Values of the coefficient of determination (R2) that are
closer to 1 imply that this model better fits the data. When R2

is greater than 0.8 and close to 1, the model is deemed robust
[31].&e NSE is a normalized statistic that regulates the level
of residual variance compared to the variance of the data
being measured [32]. &e NSE scale ranges from −∞ to 1,
with 1 denoting an ideal match. If the NSE value is greater

than 0.65, a strong correlation exists [32, 33]. &e root mean
square error (RMSE)-standard deviation ratio (RSR) is
computed by dividing the RMSE by the standard deviation
of the observed data.&e RSR varies from 0, representing the
optimal value, to a significant positive value. &e RSR ranges
from the optimal value of 0 to a substantial positive number.
Classification ranges are expressed as very good, good, ac-
ceptable, and unacceptable. &e RSR ranges are
0.000≤RSR≤ 0.500, 0.500≤RSR≤ 0.600, 0.600≤RSR≤
0.700, and RSR> 0.700, respectively [34].

5. Methodology

&e present study is carried out based on the proposed
framework that involves four main steps as follows: (1) data
preparation and correlation analysis, (2) development of the
model, (3) validation of the proposed model, and (4) sen-
sitivity analysis (Figure 2):

(1) Data preparation and correlation analysis: In this
first step, the data of samples from the laboratory
were utilized to build the training and testing
datasets. &e training dataset was constructed using
80% of the total data, while the testing dataset was
built from the remaining 20%.

(2) Development of the model: In this second step, the
training dataset was applied for training the model
based on the XGBoost algorithm. &e optimization
of user defined parameters is undertaken by carrying
out multiple runs with these parameters on the
training data and analyzing the performance of the
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resulting models on testing data. All training and
testing operations were conducted out in Orange
software.

(3) Validation of the proposed models: In this third step,
the testing dataset was adopted for validating the
proposed models. Statistical indices including R2,
NSE, and RSR were applied to validate the models.
&e proposed model is compared to the reference
models used in the published literature. Furthermore,
Taylor diagram is utilized to illustrate how similar the
models (including the proposed XGBoost) are to the
reference/observed point position.

(4) Sensitivity analysis: In the last step, sensitivity
analysis is used for evaluating the influence of input
factors on the shear strength of rockfill material.

6. Results and Discussion

&e proposed model that estimates the RFM shear strength
is developed using orange software. &e predictor variables
were provided via an input set (x) defined by x� [D10, D30,
D60, D90, Cc, Cu, GM, FM, R, UCSmin, UCSmax, c, and σn],
while the target variable (y) is shear strength (τ) of the
rockfill material. Every modelling stage requires the selection
of the suitable size of training and testing datasets. Con-
sequently, 80% (132 cases) of the total data were employed to
generate models while the remaining 20% (33 cases) of the
data were used to test the developed models in this study.
&eXGBoostmodel was tuned through trial and error to get an

optimal hyperparameters values owing to accurate estimate of
the shear strength of rockfill materials. &is study optimizes
some essential XGBoost parameters and clarifies the definitions
of these hyperparameters.&e tuning parameters for themodel
were selected and then changed during the trials until the best
metrics from Table 2 were obtained.

&e predictive performance of the training and testing
datasets is shown in regression form in Figure 3. In terms of
training, the XGBoost model produced the best prediction
results (i.e., R2 = 0.9707, NSE= 0.9701 and RSR= 0.1729)
compared to SVM (i.e., R2 = 0.9655, NSE= 0.9639 and
RSR= 0.1899), RF (i.e., R2 = 0.9545, NSE= 0.9542, and
RSR= 0.2140), AdaBoost (i.e., R2 = 0.9390, NSE= 0.9388,
and RSR= 0.2474), and KNN (i.e., R2 = 0.6233, NSE= 0.6180,
and RSR= 0.6181). It is also verified by the findings of R2,
NSE, and RSR in Figure 4 as XGBoost produced lesser RSR,
higher R2, and NSE values compared to SVM, RF, AdaBoost,
and KNNmodels developed in the literature by Ahmad et al.
[18] and the parameter optimization is presented in Table 2.

As depicted in Figure 4, the XGBoost model per-
formed the best in terms of R2, NSE, and RSR (i.e.,
R2 � 0.9676, NSE � 0.9672, and RSR � 0.1812) compared
to SVM (i.e., R2 � 0.9656, NSE � 0.9654, and
RSR � 0.1861), RF (i.e., R2 � 0.9656, NSE � 0.9164, and
RSR � 0.2891), AdaBoost (i.e., R2 � 0.9181, NSE � 0.8835,
and RSR � 0.3414), and KNN (i.e., R2 � 0.6304,
NSE � 0.6076, and RSR � 0.6264) in the testing phase. &e
outcomes of this and a prior study by Ahmad et al. [18]
(see Figure 4) demonstrate that the ML method may
accurately predict the shear strength of RFMs. &e
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optimization parameters

Sensitivity analysis

XGBoost algorithm

Evaluating the developed
model based on R2, NSE,
RSR, and Taylor diagram

Data splitting into training
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correlation between
different parameters

1
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4
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A
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D
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Validation
of the
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Figure 2: Flowchart illustrates the proposed methodology for present study.
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comparison of study outcomes makes sense because the
data sets and inputs are the same. In contrast, the
XGBoost model beats the other models in terms of
predictive performance and offered a balanced prediction
throughout the training and testing data sets. In addition,
due to the study’s small data set, additional research on
other data sets is necessary to establish the most generic
model for predicting the shear strength of RFM.

&e difference between the actual and predicted shear
strength of RFM is represented in Figure 5 by comparing the
results of the training and testing sets. &e proposed

XGBoost model is satisfactory for predicting the RFM shear
strength, barring a few noise points.

Taylor diagram (see Figure 6) is utilized to illustrate how
similar the models (including the proposed XGBoost) are to the
reference/observed point position based on their correlation,
root-mean-square error difference, and amplitude of their
variations (represented by their standard deviations). &e better
the performance, the closer eachmodel point is to the position of
the reference/observed point. In terms of predictive ability, the
proposed XGBoost model beats the SVM, RF, AdaBoost, and
KNN models developed in the literature by Ahmad et al. [18].

Table 2: Parameter configuration.

Algorithm Parameter optimization
XGBoost n estimators� 40, learning rate� 0.250, maximum depth� 4
SVM Cost� 8, regression loss epsilon� 0.1, kernel type� radial basis function
RF Number of trees� 15, limit depth of individual trees� 3
KNN Number of neighbors� 5, metric� euclidean, weight� uniform
AdaBoost Number of estimators� 2, learning rate� 0.1, boosting algorithm� SAMME, regression loss function� linear
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Figure 3: Regression graph of the XGBoost model for (a) training and (b) testing datasets.
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Figure 4: Comparison of R2, NSE, and RSR values from the XGBoost, SVM, RF, AdaBoost, and KNNmodels in (a) training; and (b) testing
phases.
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&e sensitivity results of the XGBoost model were
evaluated utilising Yang and Zang’s [35] approach for
evaluating the influence of input factors on the shear
strength of rockfill material. &is approach, which
has been the topic of numerous studies [36–41], is as
follows:

rij �
􏽐

n
m�1 yim × yom( 􏼁

����������������

􏽐
n
m�1 y

2
im 􏽐

n
m�1 y

2
om

􏽱 , (10)

where n represents the number of values (i.e., 132); yim

and yom denotes input and output variables, respectively.
For each input parameter, the rij value ranges from zero
to one, with the greatest rij values indicating the efficient
output variable (i.e., τ). Figure 7 shows the rij scores for
all input variables and demonstrates that σn (rij � 0.99)
has the greatest effect on the shear strength of rockfill
material. Furthermore, Figure 1 shows that the normal
stress σn has the highest ρ of 0.97 in all other parameters
validating the sensitivity analysis results.
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Figure 5: Results of XGBoost model training and testing phases for rockfill material shear strength.

Standard deviation

St
an

da
rd

 d
ev

ia
tio

n

0.2

0.4

0.6

0.8

1

0

0.1

0.3

0.5

0.66

0.8

1
0.1 0.2 0.3

0.4
0.5

0.6

0.7

0.8

0.9

0.95

0.99

R MS E

XGBoost
AdaBoost
RF

SVM
KNN
Reference

0.1 0.3 0.5 0.66 0.8 1

Correlation Coefficient

Figure 6: Taylor diagram of the models.

8 Complexity



7. Conclusions

Using an XGBoost algorithm, a new prediction model for
RFM shear strength is proposed in the current study.
Comparisons reveal that the proposed XGBoost model
provides the most accurate prediction of the RFM’s shear
strength when compared to the algorithms developed using
the SVM, RF, AdBoost, and KNNmodel. Important findings
found from this study include as follows:

(1) In the test phase, results showed that the XGBoost
had the highest power performance (R2 � 0.9676,
NSE� 0.9672, and RSR� 0.1812) compared to other
machine learning models. Furthermore, based on the
scatter plots of actual and predicted values, the
XGBoost model exhibited a better fit to the observed
data, indicating that it has potential for broader
applications in RFM material properties prediction.

(2) Compared to SVM, RF, AdaBoost, and KNNmodels
in the literature, the proposed XGBoost model has a
superior predictive capability. In addition, the pro-
posed model is amenable to further modification so
that the accumulation of further data will consid-
erably enhance its predictive potential.

(3) &e findings of the sensitivity analysis indicate that
five parameters, namely, the normal stress, the 90%
passing sieve diameters (D90), the dry unit weight,
and the ISRM hardness rating, are the most sensitive
and important factors for estimating the shear
strength of rockfill materials.

(4) &e developed XGBoost model gives predictions
with the same level of accuracy as existing soft
computing methods.

Since the proposed XGBoost model produces predic-
tions based on the input values, interpolation between the
input variables is more accurate and reliable than ex-
trapolation. &erefore, the model should not be used for
input parameter values beyond the defined range of the
study.
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in machine learning modeling reviewing hybrid and ensemble
methods,” Proceedings of International Conference on Global
Research and Education, pp. 215–227.

[29] L. T. Pham, L. Luo, and A. Finley, “Evaluation of random
forests for short-term daily streamflow forecasting in rainfall-
and snowmelt-driven watersheds,” Hydrology and Earth
System Sciences, vol. 25, no. 6, pp. 2997–3015, 2021.

[30] V. Prasath, H. A. A. Alfeilat, A. Hassanat et al., “Distance and
Similarity Measures Effect on the Performance of K-Nearest
Neighbor Classifier--A Review,” 2017, https://arxiv.org/abs/
1708.04321.

[31] A. H. Gandomi, S. K. Babanajad, A. H. Alavi, and Y. Farnam,
“Novel approach to strength modeling of concrete under
triaxial compression,” Journal of Materials in Civil Engi-
neering, vol. 24, no. 9, pp. 1132–1143, 2012.

[32] J. Nash and J. V. Sutcliffe, “River flow forecasting through
conceptual models part I—a discussion of principles,” Journal
of Hydrology, vol. 10, no. 3, pp. 282–290, 1970.

[33] D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner,
R. D. Harmel, and T. L. Veith, “Model evaluation guidelines
for systematic quantification of accuracy in watershed sim-
ulations,” Transactions of the ASABE, vol. 50, no. 3,
pp. 885–900, 2007.

[34] K. Khosravi, L. Mao, O. Kisi, Z. M. Yaseen, and S. Shahid,
“Quantifying hourly suspended sediment load using data
mining models: case study of a glacierized Andean catchment
in Chile,” Journal of Hydrology, vol. 567, pp. 165–179, 2018.

[35] Y. Yang and Q. Zhang, “A hierarchical analysis for rock
engineering using artificial neural networks,” Rock Mechanics
and Rock Engineering, vol. 30, no. 4, pp. 207–222, 1997.

[36] R. Shirani Faradonbeh, D. Jahed Armaghani, M. Z. AbdMajid
et al., “Prediction of ground vibration due to quarry blasting
based on gene expression programming: a newmodel for peak
particle velocity prediction,” International journal of Envi-
ronmental Science and Technology, vol. 13, no. 6, pp. 1453–
1464, 2016.

[37] W. Chen, M. Hasanipanah, H. Nikafshan Rad, D. Jahed
Armaghani, and M. M. Tahir, “A new design of evolutionary
hybrid optimization of SVR model in predicting the blast-
induced ground vibration,” Engineering with Computers,
vol. 37, no. 2, pp. 1455–1471, 2019.

[38] H. Nikafshan Rad, I. Bakhshayeshi, W. A. Wan Jusoh,
M. M. Tahir, and L. K. Foong, “Prediction of flyrock in mine

10 Complexity

https://arxiv.org/abs/1708.04321
https://arxiv.org/abs/1708.04321


blasting: a new computational intelligence approach,”Natural
Resources Research, vol. 29, no. 2, pp. 609–623, 2020.

[39] M. H. Ahmad, F. Ahmad, X.-W. Tang et al., “Supervised
Learning Methods for Modeling Concrete Compressive
Strength Prediction at High Temperature,” Materials, vol. 14,
2021.

[40] M. Ahmad, M. Amjad, R. A. Al-Mansob et al., “Prediction of
liquefaction-induced lateral displacements using Gaussian
process regression,” Applied Sciences, vol. 12, no. 4, p. 1977,
2022.

[41] M. Amjad, I. Ahmad,M. Ahmad, P.Wróblewski, P. Kamiński,
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