12 research outputs found

    Different chemical behaviors and antioxidant activity of three novel schiff bases containing hydroxyl groups. X-ray structure of CH2{cyclo-C6H10-NH=CH-(2-O-naphth)}2.H2O

    Get PDF
    The antioxidant activities of three new Schiff base compounds, 1–3, were studied through their direct scavenging ability to eliminate free radicals using DPPH and ABTS methods and also through their indirect antioxidant activity as measured using the ferric thiocyanate (FTC) method. The number of OH groups in the compounds and their positions play a role in the activity. The crystal structure of CH2{cycloC6H10NHCH-(2-O-naphth)}2.H2O (1), has been determined and proves the existence of intramolecular hydrogen-bonds and hydrogen-bonded water molecules and reveals the keto-amine (NH⋯O) tautomer of this compound. One cyclo-hexyl ring was found to be disordered, and was resolved in two orientations. Hydrogen atoms of the NHCH groups were located in difference maps and were refined freely. Compounds 2 and 3 exhibit the enol-imine form. The UV–vis spectra of the three compounds have been studied in organic solvents of different polarity, and in basic and acidic media, and were found helpful in understanding the tautomeric forms in these compounds; the polarity was modified by adding (CF3COOH) or [(C2H5)3N] to the solvent. All three compounds have been characterized by elemental analysis, UV–vis, FTIR, NMR and MS

    Synthesis and greener pastures biological study of bis-thiadiazoles as potential Covid-19 drug candidates

    Get PDF
    A novel series of bis- (Abdelhamid et al., 2017, Banerjee et al., 2018, Bharanidharan et al., 2022)thiadiazoles was synthesized from the reaction of precursor dimethyl 2,2′-(1,2-diphenylethane-1,2-diylidene)-bis(hydrazine-1-carbodithioate) and hydrazonyl chlorides in ethanol under ultrasonic irradiation. Spectral tools (IR. NMR, MS, elemental analyses, molecular dynamic simulation, DFT and LUMO and HOMO) were used to elucidate the structure of the isolated products. Molecular docking for the precursor, 3 and ligands 6a-i to two COVID-19 important proteins Mpro^{pro} and RdRp was compared with two approved drugs, Remdesivir and Ivermectin. The binding affinity varied between the ligands and the drugs. The highest recorded binding affinity of 6c with Mpro^{pro} was (−9.2 kcal/mol), followed by 6b and 6a, (−8.9 and −8.5 kcal/mol), respectively. The lowest recorded binding affinity was (−7.0 kcal/mol) for 6 g. In comparison, the approved drugs showed binding affinity (−7.4 and −7.7 kcal/mol), for Remdesivir and Ivermectin, respectively, which are within the range of the binding affinity of our ligands. The binding affinity of the approved drug Ivermectin against RdRp recoded the highest (−8.6 kcal/mol), followed by 6a, 6 h, and 6i are the same have (−8.2 kcal/mol). The lowest reading was found for compound 3 ligand (−6.3 kcal/mol). On the other side, the amino acids also differed between the compounds studied in this project for both the viral proteins. The ligand 6a forms three H-bonds with Thr 319(A), Sr 255(A) and Arg 457(A), whereas Ivermectin forms three H-bonds with His 41(A), Gly143(A) and Gln 18(A) for viral Mpro^{pro}. The RdRp amino acids residues could be divided into four groups based on the amino acids that interact with hydrogen or hydrophobic interactions. The first group contained 6d, 6b, 6 g, and Remdesivir with 1–4 hydrogen bonds and hydrophobic interactions 1 to 10. Group 2 is 6a and 6f exhibited 1 and 3 hydrogen bonds and 15 and 14 hydrophobic interactions. Group 3 has 6e and Ivermectin shows 4 and 3 hydrogen bonds, respectively and 11 hydrophobic interactions for both compounds. The last group contains ligands 3, 6c, 6 h, and 6i gave 1–3 hydrogen bonds and 6c and 3 recorded the highest number of hydrophobic interactions, 14 for both 6c and 6 h. Pro Tox-II estimated compounds’ activities as Hepatoxic, Carcinogenic and Mutagenic, revealing that 6f-h were inactive in all five similar to that found with Remdesivir and Ivermectin. The drug-likeness prediction was carried out by studying physicochemical properties, lipophilicity, size, polarity, insolubility, unsaturation, and flexibility. Generally, some properties of the ligands were comparable to that of the standards used in this study, Remdesivir and Ivermectin

    Molecular insights into the VIRESCENS amino acid sequence and its implication in anthocyanin production in red- and yellow-fruited cultivars of date palm

    No full text
    Abstract This study examined the amino acid sequence of the VIRESCENS gene (VIR), which regulates the production of anthocyanin in 12 cultivars of the date palm (Phoenix dactylifera L.), grown in Al-Madinah Al-Munawarah of the Kingdom of Saudi Arabia. The gene products were amplified via polymerase chain reactions, amplifying both exons and introns. The products were sequenced for the reconstruction of a phylogenetic tree, which used the associated amino acid sequences. The ripening stages of Khalal, Rutab, and Tamar varied among the cultivars. Regarding VIR genotype, the red date had the wild-type gene (VIR +), while the yellow date carried a dominant mutation (VIR IM ), i.e., long terminal repeat retrotransposons (LTR-RTs). The DNA sequence of VIR IM revealed that the insertion length of the LTR-RTs ranged between 386 and 476 bp. The R2 and R3 motifs in both VIR + and VIR IM were conserved. The C-terminus motifs S6A, S6B, and S6C were found in the VIR + protein sequence. However, the amino acids at positions 123, 161, 166, and 168 differed between VIR + and VIR IM , and were not included in the C-terminus motifs. Within the VIR + allele, the lysine at position 187 in the C-terminus was located immediately after S6B, with a protein binding score of 0.3, which was unique to the dark, red-fruited cultivars Ajwah, Anbarah, and Safawi. In the lighter, red-fruited cultivars, the presence of glutamic acid at the same position suggested that the anthocyanin regulation of date palm might be outside the R2 and R3 domains in the N-terminus

    Evaluation of aerial microbial pollutants in Al-Haram Al-Nabawi during pilgrimage of 2013

    Get PDF
    Al-Madinah Al-Munawwarah is the second holiest site in Islam. The possibility of new emerging microbes is valid due to the increased number of pilgrims. The objectives of the current study were to estimate the numbers of fungi and bacteria inside and outside Al-Haram Al-Nabawi and to find whether new bacterial and fungal species have emerged compared to previous studies. Air samples were collected twice a day from 12 spots and four directions during the pilgrim year of 2013 for four consecutive weeks by using the sedimentation method. Thirty five genera and fifty eight species were identified. The most recovered bacterial genera were Staphylococcus, Micrococcus, Bacillus, and Dermacoccus with 32.47%, 18.18%, 12.85%, and 11.23%, respectively. Fifty nine isolates of fungi were molecularly identified. Aspergillus species had the highest percentage (78%). The other fungal genera identified (Alternaria triticina, Emericella nidulans, Emericella striata, Mucor circinelloides, Penicillium chrysogenum, Penicillium minioluteum, Rhizopus arrhizus, Rhizopus oryzae, and Syncephalastrum racemosum) had less than 5% frequency. In places such as Al-Haram Al-Nabawi, a large and crowded public (millions) exist especially during pilgrimages and Ramadan, thus, exposure to microorganisms is high. On the other hand, microorganism infectivity depends on many factors including their virulence, landing site, and person’s immunity. For those reasons, many aspects should be considered to avoid aerosol contaminants

    Potential COVID-19 Drug Candidates Based on Diazinyl-Thiazol-Imine Moieties: Synthesis and Greener Pastures Biological Study

    No full text
    A novel series of 1-aryl-N-[4-phenyl-5-(arylazo)thiazol-2-yl)methanimines has been synthesized via the condensation of 2-amino-4-phenyl-5-arylazothiazole with various aromatic aldehydes. The synthesized imines were characterized by spectroscopic techniques, namely 1H and 13C-NMR, FTIR, MS, and Elemental Analysis. A molecular comparative docking study for 3a–f was calculated, with reference to two approved drugs, Molnupiravir and Remdesivir, using 7BQY (Mpro; PDB code 7BQY; resolution: 1.7 A°) under identical conditions. The binding scores against 7BQY were in the range of −7.7 to −8.7 kcal/mol for 3a–f. The high scores of the compounds indicated an enhanced binding affinity of the molecules to the receptor. This is due to the hydrophobic interactions and multi-hydrogen bonds between 3a–f ligands and the receptor’s active amino acid residues. The main aim of using in silco molecular docking was to rank 3a–f with respect to the approved drugs, Molnupiravir and Remdesivir, using free energy methods as greener pastures. A further interesting comparison presented the laydown of the ligands before and after molecular docking. These results and other supporting statistical analyses suggested that ligands 3a–f deserve further investigation in the context of potential therapeutic agents for COVID-19. Free-cost, PASS, SwissADME, and Way2drug were used in this research paper to determine the possible biological activities and cytotoxicity of 3a–f

    Synthesis and greener pastures biological study of bis-thiadiazoles as potential Covid-19 drug candidates

    Get PDF
    A novel series of bis- (Abdelhamid et al., 2017; Banerjee et al., 2018; Bharanidharan et al., 2022)thiadiazoles was synthesized from the reaction of precursor dimethyl 2,2′-(1,2-diphenylethane-1,2-diylidene)-bis(hydrazine-1-carbodithioate) and hydrazonyl chlorides in ethanol under ultrasonic irradiation. Spectral tools (IR. NMR, MS, elemental analyses, molecular dynamic simulation, DFT and LUMO and HOMO) were used to elucidate the structure of the isolated products. Molecular docking for the precursor, 3 and ligands 6a-i to two COVID-19 important proteins Mpro and RdRp was compared with two approved drugs, Remdesivir and Ivermectin. The binding affinity varied between the ligands and the drugs. The highest recorded binding affinity of 6c with Mpro was (−9.2 kcal/mol), followed by 6b and 6a, (−8.9 and −8.5 kcal/mol), respectively. The lowest recorded binding affinity was (−7.0 kcal/mol) for 6 g. In comparison, the approved drugs showed binding affinity (−7.4 and −7.7 kcal/mol), for Remdesivir and Ivermectin, respectively, which are within the range of the binding affinity of our ligands. The binding affinity of the approved drug Ivermectin against RdRp recoded the highest (−8.6 kcal/mol), followed by 6a, 6 h, and 6i are the same have (−8.2 kcal/mol). The lowest reading was found for compound 3 ligand (−6.3 kcal/mol). On the other side, the amino acids also differed between the compounds studied in this project for both the viral proteins. The ligand 6a forms three H-bonds with Thr 319(A), Sr 255(A) and Arg 457(A), whereas Ivermectin forms three H-bonds with His 41(A), Gly143(A) and Gln 18(A) for viral Mpro. The RdRp amino acids residues could be divided into four groups based on the amino acids that interact with hydrogen or hydrophobic interactions. The first group contained 6d, 6b, 6 g, and Remdesivir with 1–4 hydrogen bonds and hydrophobic interactions 1 to 10. Group 2 is 6a and 6f exhibited 1 and 3 hydrogen bonds and 15 and 14 hydrophobic interactions. Group 3 has 6e and Ivermectin shows 4 and 3 hydrogen bonds, respectively and 11 hydrophobic interactions for both compounds. The last group contains ligands 3, 6c, 6 h, and 6i gave 1–3 hydrogen bonds and 6c and 3 recorded the highest number of hydrophobic interactions, 14 for both 6c and 6 h. Pro Tox-II estimated compounds’ activities as Hepatoxic, Carcinogenic and Mutagenic, revealing that 6f-h were inactive in all five similar to that found with Remdesivir and Ivermectin. The drug-likeness prediction was carried out by studying physicochemical properties, lipophilicity, size, polarity, insolubility, unsaturation, and flexibility. Generally, some properties of the ligands were comparable to that of the standards used in this study, Remdesivir and Ivermectin

    Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection

    No full text
    Reduced height (Rht)-1 and Photoperiod (Ppd) have major effects on the adaptability of bread wheat (Triticum aestivum) to specific environments. Ppd-D1a is a photoperiod insensitive allele that reduces time to flowering. The gibberellin (GA) insensitive alleles Rht-B1b and Rht-D1b shorten plant stature and were important components of the 'green revolution'. Two additional Rht-B1 alleles were recently identified that contain a 160 or 197 bp insertion upstream of the coding region and may affect plant height or GA sensitivity Wilhelm et al. (Theor Appl Gen doi:10.1007/s00122-013-2088-7, 2013b). We determined the frequency of the five alleles in a worldwide core collection of 372 wheat accessions (372CC) and estimated their effects on height, days to heading, and GA sensitivity when the collection was grown in pots outdoors or in the glasshouse. This revealed that each allele was widespread geographically with frequencies ranging from 0.12 to 0.25. Ppd-D1a was associated with significant (p <= 0.05) reductions in days to heading and height relative to photoperiod sensitive Ppd-D1b. Relative to wild type, Rht-B1b and Rht-D1b each resulted in significant reductions in height (approximately 30 %) and GA sensitivity. The 160 and 197 bp alleles were associated with significant height reductions of 18 and 12 %, respectively, and with nonsignificant reductions in GA sensitivity relative to wild type. Two statistical methods were developed and used to estimate GA sensitivity of the 372CC accessions, but novel GA insensitive alleles were not identified. Further characterization of the Rht-B1 insertion alleles is required, but our results suggest these may enable fine adjustments in plant height

    Molecular Characterization of Rht-1 Dwarfing Genes in Hexaploid Wheat12[C][W][OA]

    No full text
    The introduction of the Reduced height (Rht)-B1b and Rht-D1b semidwarfing genes led to impressive increases in wheat (Triticum aestivum) yields during the Green Revolution. The reduction in stem elongation in varieties containing these alleles is caused by a limited response to the phytohormone gibberellin (GA), resulting in improved resistance to stem lodging and yield benefits through an increase in grain number. Rht-B1 and Rht-D1 encode DELLA proteins, which act to repress GA-responsive growth, and their mutant alleles Rht-B1b and Rht-D1b are thought to confer dwarfism by producing more active forms of these growth repressors. While no semidwarfing alleles of Rht-A1 have been identified, we show that this gene is expressed at comparable levels to the other homeologs and represents a potential target for producing novel dwarfing alleles. In this study, we have characterized additional dwarfing mutations in Rht-B1 and Rht-D1. We show that the severe dwarfism conferred by Rht-B1c is caused by an intragenic insertion, which results in an in-frame 90-bp insertion in the transcript and a predicted 30-amino acid insertion within the highly conserved amino-terminal DELLA domain. In contrast, the extreme dwarfism of Rht-D1c is due to overexpression of the semidwarfing Rht-D1b allele, caused by an increase in gene copy number. We show also that the semidwarfing alleles Rht-B1d and Rht-B1e introduce premature stop codons within the amino-terminal coding region. Yeast two-hybrid assays indicate that these newly characterized mutations in Rht-B1 and Rht-D1 confer “GA-insensitive” dwarfism by producing DELLA proteins that do not bind the GA receptor GA INSENSITIVE DWARF1, potentially compromising their targeted degradation
    corecore