496 research outputs found

    Locality in Theory Space

    Get PDF
    Locality is a guiding principle for constructing realistic quantum field theories. Compactified theories offer an interesting context in which to think about locality, since interactions can be nonlocal in the compact directions while still being local in the extended ones. In this paper, we study locality in "theory space", four-dimensional Lagrangians which are dimensional deconstructions of five-dimensional Yang-Mills. In explicit ultraviolet (UV) completions, one can understand the origin of theory space locality by the irrelevance of nonlocal operators. From an infrared (IR) point of view, though, theory space locality does not appear to be a special property, since the lowest-lying Kaluza-Klein (KK) modes are simply described by a gauged nonlinear sigma model, and locality imposes seemingly arbitrary constraints on the KK spectrum and interactions. We argue that these constraints are nevertheless important from an IR perspective, since they affect the four-dimensional cutoff of the theory where high energy scattering hits strong coupling. Intriguingly, we find that maximizing this cutoff scale implies five-dimensional locality. In this way, theory space locality is correlated with weak coupling in the IR, independent of UV considerations. We briefly comment on other scenarios where maximizing the cutoff scale yields interesting physics, including theory space descriptions of QCD and deconstructions of anti-de Sitter space.Comment: 40 pages, 11 figures; v2: references and clarifications added; v3: version accepted by JHE

    The Mechanism of Monitoring and Tracking of Healthcare Systems

    Get PDF
    This work concerned with e-healthcare that transmit digital medical data through healthcare system. Online monitoring is concentrated on the process of monitoring and tracking of people at home, car, office, and any other location. e-healthcare deals with patients that they are located far from doctor jurisdiction. Healthcare monitoring including measurements of temperature, blood pressure / pulse monitors and ECG, etc. This works deals with the development of monitoring system via adding intelligent system to distinguish the emergency cases. This work try to keep patient data privacy, reduce attack or penetration of data, reduce processing time and at the same time increasing the efficiency of the overall system. The privacy of patient data is critical so this must maintain the confidentiality of information from intrusion

    Distributions of charged massive scalars and fermions from evaporating higher-dimensional black holes

    Full text link
    A detailed numerical analysis is performed to obtain the Hawking spectrum for charged, massive brane scalars and fermions on the approximate background of a brane charged rotating higher-dimensional black hole constructed in arXiv:0907.5107. We formulate the problem in terms of a "spinor-like" first order system of differential wave equations not only for fermions, but for scalars as well and integrate it numerically. Flux spectra are presented for non-zero mass, charge and rotation, confirming and extending previous results based on analytic approximations. In particular we describe an inverted charge splitting at low energies, which is not present in four or five dimensions and increases with the number of extra dimensions. This provides another signature of the evaporation of higher-dimensional black holes in TeV scale gravity scenarios.Comment: 19 pages, 6 figures, minor typos corrected, 1 page added with a discussion on higher spins, added reference

    Analyticity and the Holographic S-Matrix

    Get PDF
    We derive a simple relation between the Mellin amplitude for AdS/CFT correlation functions and the bulk S-Matrix in the flat spacetime limit, proving a conjecture of Penedones. As a consequence of the Operator Product Expansion, the Mellin amplitude for any unitary CFT must be a meromorphic function with simple poles on the real axis. This provides a powerful and suggestive handle on the locality vis-a-vis analyticity properties of the S-Matrix. We begin to explore analyticity by showing how the familiar poles and branch cuts of scattering amplitudes arise from the holographic description. For this purpose we compute examples of Mellin amplitudes corresponding to 1-loop and 2-loop Witten diagrams in AdS. We also examine the flat spacetime limit of conformal blocks, implicitly relating the S-Matrix program to the Bootstrap program for CFTs. We use this connection to show how the existence of small black holes in AdS leads to a universal prediction for the conformal block decomposition of the dual CFT.Comment: 28+15 pages, 7 figures; v2: typos correcte

    Dark matter and sub-GeV hidden U(1) in GMSB models

    Full text link
    Motivated by the recent PAMELA and ATIC data, one is led to a scenario with heavy vector-like dark matter in association with a hidden U(1)XU(1)_X sector below GeV scale. Realizing this idea in the context of gauge mediated supersymmetry breaking (GMSB), a heavy scalar component charged under U(1)XU(1)_X is found to be a good dark matter candidate which can be searched for direct scattering mediated by the Higgs boson and/or by the hidden gauge boson. The latter turns out to put a stringent bound on the kinetic mixing parameter between U(1)XU(1)_X and U(1)YU(1)_Y: θ106\theta \lesssim 10^{-6}. For the typical range of model parameters, we find that the decay rates of the ordinary lightest neutralino into hidden gauge boson/gaugino and photon/gravitino are comparable, and the former decay mode leaves displaced vertices of lepton pairs and missing energy with distinctive length scale larger than 20 cm for invariant lepton pair mass below 0.5 GeV. An unsatisfactory aspect of our model is that the Sommerfeld effect cannot raise the galactic dark matter annihilation by more than 60 times for the dark matter mass below TeV.Comment: 1+15 pages, 4 figures, version published in JCAP, references added, minor change

    Unitarity and the Holographic S-Matrix

    Get PDF
    The bulk S-Matrix can be given a non-perturbative definition in terms of the flat space limit of AdS/CFT. We show that the unitarity of the S-Matrix, ie the optical theorem, can be derived by studying the behavior of the OPE and the conformal block decomposition in the flat space limit. When applied to perturbation theory in AdS, this gives a holographic derivation of the cutting rules for Feynman diagrams. To demonstrate these facts we introduce some new techniques for the analysis of conformal field theories. Chief among these is a method for conglomerating local primary operators to extract the contribution of an individual primary in their OPE. This provides a method for isolating the contribution of specific conformal blocks which we use to prove an important relation between certain conformal block coefficients and anomalous dimensions. These techniques make essential use of the simplifications that occur when CFT correlators are expressed in terms of a Mellin amplitude.Comment: 33+12 pages, 6 figures; v2: typos corrected, some clarifications adde

    2:1 for Naturalness at the LHC?

    Get PDF
    A large enhancement of a factor of 1.5 - 2 in Higgs production and decay in the diphoton channel, with little deviation in the ZZ channel, can only plausibly arise from a loop of new charged particles with large couplings to the Higgs. We show that, allowing only new fermions with marginal interactions at the weak scale, the required Yukawa couplings for a factor of 2 enhancement are so large that the Higgs quartic coupling is pushed to large negative values in the UV, triggering an unacceptable vacuum instability far beneath the 10 TeV scale. An enhancement by a factor of 1.5 can be accommodated if the charged fermions are lighter than 150 GeV, within reach of discovery in almost all cases in the 8 TeV run at the LHC, and in even the most difficult cases at 14 TeV. Thus if the diphoton enhancement survives further scrutiny, and no charged fermions beneath 150 GeV are found, there must be new bosons far beneath the 10 TeV scale. This would unambiguously rule out a large class of fine-tuned theories for physics beyond the Standard Model, including split SUSY and many of its variants, and provide strong circumstantial evidence for a natural theory of electroweak symmetry breaking at the TeV scale. Alternately, theories with only a single fine-tuned Higgs and new fermions at the weak scale, with no additional scalars or gauge bosons up to a cutoff much larger than the 10 TeV scale, unambiguously predict that the hints for a large diphoton enhancement in the current data will disappear.Comment: 18 pages, 6 figures; typos corrected and references adde

    Preliminary design and analysis of a photovoltaic-powered direct air capture system for a residential building

    Get PDF
    To promote the adoption of Direct Air Capture (DAC) systems, this paper proposes and tests a photovoltaic-powered DAC system in a generic residential building located in Qatar. The proposed DAC system can efficiently reduce CO2 concentration in a living space, thus providing an incentive to individuals to adopt it. The ventilation performance of the building is determined using Computational Fluid Dynamics (CFD) simulations, undertaken with ANSYS-CFD. The CFD model was validated using microclimate-air quality dataloggers. The simulated velocity was 1.4 m/s and the measured velocity was 1.35 m/s, which corresponds to a 3.5% error. The system decarbonizes air supplied to the building by natural ventilation or ventilation according to the ASHRAE standards. Furthermore, the performance of the photovoltaic system is analyzed using the ENERGYPLUS package of the Design Builder software. We assume that 75% of CO2 is captured. In addition, a preliminary characterization of the overall system’s performance is determined. It is determined that the amount of CO2 captured by the system is 0.112 tones/year per square meter of solar panel area. A solar panel area of 19 m2 is required to decarbonize the building with natural ventilation, and 27 m2 is required in the case of ventilation according to the ASHRAE standard

    Preliminary design and analysis of a photovoltaic-powered direct air capture system for a residential building

    Get PDF
    To promote the adoption of Direct Air Capture (DAC) systems, this paper proposes and tests a photovoltaic-powered DAC system in a generic residential building located in Qatar. The proposed DAC system can efficiently reduce CO2 concentration in a living space, thus providing an incentive to individuals to adopt it. The ventilation performance of the building is determined using Computational Fluid Dynamics (CFD) simulations, undertaken with ANSYS-CFD. The CFD model was validated using microclimate-air quality dataloggers. The simulated velocity was 1.4 m/s and the measured velocity was 1.35 m/s, which corresponds to a 3.5% error. The system decarbonizes air supplied to the building by natural ventilation or ventilation according to the ASHRAE standards. Furthermore, the performance of the photovoltaic system is analyzed using the ENERGYPLUS package of the Design Builder software. We assume that 75% of CO2 is captured. In addition, a preliminary characterization of the overall system’s performance is determined. It is determined that the amount of CO2 captured by the system is 0.112 tones/year per square meter of solar panel area. A solar panel area of 19 m2 is required to decarbonize the building with natural ventilation, and 27 m2 is required in the case of ventilation according to the ASHRAE standard

    Collagen extract obtained from Nile tilapia (Oreochromis niloticus L.) skin accelerates wound healing in rat model via up regulating VEGF, bFGF, and α-SMA genes expression

    Get PDF
    Background Collagen is the most abundant structural protein in the mammalian connective tissue and represents approximately 30% of animal protein. The current study evaluated the potential capacity of collagen extract derived from Nile tilapia skin in improving the cutaneous wound healing in rats and investigated the underlying possible mechanisms. A rat model was used, and the experimental design included a control group (CG) and the tilapia collagen treated group (TCG). Full-thickness wounds were conducted on the back of all the rats under general anesthesia, then the tilapia collagen extract was applied topically on the wound area of TCG. Wound areas of the two experimental groups were measured on days 0, 3, 6, 9, 12, and 15 post-wounding. The stages of the wound granulation tissues were detected by histopathologic examination and the expression of vascular endothelial growth factor (VEGF), and transforming growth factor (TGF-ß1) were investigated using immunohistochemistry. Moreover, relative gene expression analysis of transforming growth factor-beta (TGF-ß1), basic fibroblast growth factor (bFGF), and alpha-smooth muscle actin (α-SMA) were quantified by real-time qPCR. Results The histopathological assessment showed noticeable signs of skin healing in TCG compared to CG. Immunohistochemistry results revealed remarkable enhancement in the expression levels of VEGF and TGF-β1 in TCG. Furthermore, TCG exhibited marked upregulation in the VEGF, bFGF, and α-SMA genes expression. These findings suggested that the topical application of Nile tilapia collagen extract can promote the cutaneous wound healing process in rats, which could be attributed to its stimulating effect on recruiting and activating macrophages to produce chemotactic growth factors, fibroblast proliferation, and angiogenesis. Conclusions The collagen extract could, therefore, be a potential biomaterial for cutaneous wound healing therapeutics. Backgroun
    corecore