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relation functions and the bulk S-Matrix in the flat spacetime limit, proving a conjecture

of Penedones. As a consequence of the Operator Product Expansion, the Mellin amplitude

for any unitary CFT must be a meromorphic function with simple poles on the real axis.

This provides a powerful and suggestive handle on the locality vis-a-vis analyticity prop-

erties of the S-Matrix. We begin to explore analyticity by showing how the familiar poles

and branch cuts of scattering amplitudes arise from the holographic description. For this

purpose we compute examples of Mellin amplitudes corresponding to 1-loop and 2-loop

Witten diagrams in AdS. We also examine the flat spacetime limit of conformal blocks,

implicitly relating the S-Matrix program to the Bootstrap program for CFTs. We use

this connection to show how the existence of small black holes in AdS leads to a universal

prediction for the conformal block decomposition of the dual CFT.
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1 Introduction and review

The only exact observables in quantum gravity are associated with the boundary of space-

time, so a holographic theory of asymptotically flat spacetime will be a theory of the S-

Matrix. Recently, evidence [1–3] has accumulated supporting a conjecture of Penedones [1]
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that the Mellin representation [1, 4, 5] of Conformal Field Theory (CFT) correlation func-

tions defines a dual bulk S-Matrix via the vanishing-curvature limit of the AdS/CFT cor-

respondence [6–8]. Our goal is to investigate the Mellin amplitude as a way of organizing

AdS/CFT into a holographic theory of flat spacetime where the principles of locality and

unitarity are evident. The purpose of this work is to prove Penedones’ conjecture [1, 2] and

to explore how the locality vis-a-vis analyticity of the S-Matrix emerges from the Mellin

amplitude of the CFT; we will discuss unitarity as a consequence of the OPE in a separate

work [9].

The Mellin amplitude for a CFT correlator represents the correlator in terms of a set

of variables that make CFT physics more manifest, much as momentum space naturally

represents scattering amplitudes. In the case of scalar operators, the Mellin representa-

tion [1, 4, 5] takes the form

〈O1(x1) . . .On(xn)〉 =

∫
[dδij ]M(δij)

n∏
i<j

Γ(δij)(xij)
−2δij (1.1)

where the Mellin Amplitude is the conformally invariant function M(δij). The ‘Mellin

space’ is the space of variables δij , which are symmetric and subject to the n constraints∑
j 6=i δij = ∆i, where ∆i are the dimensions of the operators Oi. One can always think of

the δij in analogy with the Mandelstam invariants sij = 2pi · pj of a scattering amplitude;

the constraints on the δij are analogous to the constraints on the sij that follow from

momentum conservation and the on-shell conditions.

The most significant principle behind the simplicity of the Mellin amplitude is uni-

tarity, in the guise of the Operator Product Expansion. Using the convergent OPE, it is

possible to express correlation functions involving many operators as a sum over products

of correlators involving fewer operators. The Mellin amplitude displays these OPE decom-

positions of correlation functions as a sum over poles, with residues given by lower-point

Mellin amplitudes. These poles are analogous to the multi-particle factorization channels

of scattering amplitudes, but in fact they are even more constrained: in unitary CFTs the

Mellin amplitude can only have simple poles in a certain region of the real axis. The exis-

tence of these factorization channels makes it possible to determine the Mellin amplitude

recursively, and we [2] and Paulos [3] gave algebraic diagrammatic rules for its evaluation

in the case of scalar theories at tree-level. We will review these and other properties of

Mellin amplitudes more thoroughly in section 1.1.

The similarity between the Mellin amplitude and the S-Matrix is no coincidence. Pene-

dones has conjectured [1] a very simple and natural relationship between the Mellin am-

plitude of a large N CFT and the S-Matrix of its bulk dual in the flat spacetime limit of
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Figure 1. This figure shows how the AdS cylinder in global coordinates corresponds to the CFT
in radial quantization. The time translation operator in the bulk of AdS is the Dilatation operator
in the CFT, so energies in AdS correspond to dimensions in the CFT.

AdS.1 His conjecture takes the form

T (sij) = lim
R→∞

1

N δd+1

(∑
i

pi

)∫ i∞

−i∞
dα eααh−∆ΣM

(
δij = −R

2sij
4α

,∆a = Rma

)
(1.2)

where R is the AdS length scale, N is a normalization factor, and T (sij) is the connected,

reduced S-Matrix of massless scalar particles as a function of the Mandelstam invariants.

Penedones checked this conjecture for general scalar theories at tree-level and for φ4 theory

at one-loop. Recently we [2] verified the conjecture for n-pt amplitudes in general scalar

theories at tree-level by showing that our diagrammatic rules for the Mellin amplitude

reduce to the usual Feynman rules in the flat space limit. By setting up the appropriate

scattering experiment [10–13] in AdS and making gratuitous use of the stationary phase

approximation, we will derive Penedones’ conjecture in section 2.

Why is the Mellin amplitude related to the flat-space S-matrix? A key point is that

the Dilatation operator in the CFT generates global time translations in AdS, as pictured

in figure 1. In other words, the energy of particles in AdS is given by the dimension of a

CFT operator (or equivalently a CFT state through the operator-state correspondence).

So aside from their manifest similarity in a large class of examples, one can understand the

relationship between Mellin and scattering amplitudes by thinking about which states in

the CFT correspond to scattering processes in AdS. The CFT states dual to AdS particles

1We will for the most part not be explicit about the bulk dual description and the corresponding
parameter N in the bulk theory, mainly using N to parameterize all deviations from a gaussian CFT.
However, in explicit examples, the parameter N arises in the bulk theory as a power of the Planck scale in
units of the AdS curvature radius R, and thus 1/N corrections are gravitation corrections in the bulk.
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with energies parametrically larger than the AdS curvature scale correspond to operators

with very large scaling dimension. The δij ’s in the Mellin amplitude correspond to relative

scaling dimensions, so scattering states localize the Mellin amplitude on large δij ’s related

to the energy and momentum of the physical scattering process. We will show how to make

this argument precise by directly extracting scattering states from the correlation functions

of n single-trace operators, written in the Mellin representation. For scattering momenta

pi large compared to the AdS curvature scale, the δij integration variables in equation (1.1)

are almost completely supported in the region where they line up with the Mandelstam

invariants, so that we have δij ∝ pi · pj . Thus, assuming only that single-particle states

exist in the flat-space limit of the bulk theory, this gives a direct, non-perturbative proof

of Penedones’ conjecture, as stated in equation (1.2).

With Penedones’ conjecture proven, we turn to an investigation of locality. From the

point of view of the S-Matrix, one must view locality2 as the statement that the scattering

amplitudes are exponentially bounded analytic functions of the kinematic invariants, except

near the real axis, where the amplitudes can have poles and branch cuts corresponding to

resonances and multi-particle states. Analyticity of the bulk S-matrix is a particularly

important property because, in contrast to most other criteria for locality, it is a sharp

statement phrased directly in terms of holographic observables. The fact that the Mellin

amplitude must be a meromorphic function with simple poles on the real axis [4, 5] seems

to us very striking: since the S-Matrix is just a simple transform of the Mellin amplitude,

perhaps bulk locality can be understood as a natural consequence of a few simple conditions

on CFTs.

We will begin to explore these issues by demonstrating how various familiar physical

analyticity properties such as branch cuts and resonances emerge from properties of the

Mellin amplitude at loop-level in AdS. The emergence of simple poles is a straightforward

application of equation (1.2) to the Mellin amplitude for a single tree-level exchange in

AdS. Indeed, the Mellin amplitude in this case already has an infinite series of poles,

corresponding to the primary CFT operator and its descendants, and all that is necessary

is for them to coalesce into a single pole at the physical bulk mass. However, how branch

cuts and resonances emerge is less obvious, since the only singular behavior of the Mellin

amplitude is the presence of poles on the real axis. The key element in this case is the

presence of a tower of poles from multi-trace operators, each of which contributes a pole

to the holographic S-matrix. In the flat-space limit, these poles appear to be arbitrarily

narrowly spaced, and we will see that from a line of such poles a branch cut emerges. Once

branch cuts arise, resonances are virtually guaranteed: the resummation of one-particle

irreducible (1PI) Witten diagrams brings the loop contribution into the denominator of

the propagator. We will show in more detail that the mechanism for turning real poles in

the Mellin amplitude into poles with large imaginary components is inherently connected

to the coalescence of poles from multi-trace operators contributing to 1PI diagrams. All

of these issues are studied in section 3, where we also comment on the significant recent

progress [16–19] that we have seen in understanding locality in AdS/CFT.

2See [14, 15] for nice and relevant discussions.
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In section 4 we study the relationship between the conformal block decomposition of

the CFT and the flat space S-Matrix. Conformal blocks are the most elementary possible

contributions to CFT 4-pt functions consistent with conformal symmetry; they correspond

to the exchange of a single primary operator in the CFT and are nicely reviewed in [20].

Since a conformal block has definite dimension and angular momentum, in the flat space

limit we find that it is simply a delta function in the center-of-mass energy times the

appropriate angular-dependence for a spin ` state:

B`
∆(δij)  P

(d)
` (cos θ)δ(s−M2). (1.3)

Recently, progress [20–26] has been made understanding general properties of CFTs using

only the conformal block decomposition, unitarity, and crossing symmetry. Via the flat

spacetime limit, this means that there is a natural relationship between this version of the

Bootstrap program [27] and the S-Matrix program.

Finally, we discuss what the presence of flat-space black holes in bulk scattering ampli-

tudes can tell us about CFT correlation functions. The behavior of high-energy scattering

amplitudes directly tells us about the size of contributions from conformal blocks of large

dimension. In theories with gravity, high-energy scattering at trans-Planckian energies

results in black hole formation, which suggests very rapid shutdown of the scattering am-

plitude for 2-to-2 scattering

S(s) ∼ exp

[
−1

2
SBH(s)

]
(1.4)

due to the large entropy of the black hole. This shutdown of the amplitude corresponds

to a rapid shutdown of the conformal block decomposition at large dimensions: we expect

that the conformal block decomposition of CFTs will truncate at some large dimension

to more than exponentially good accuracy, as we discuss in section 4.2. Deriving this

property directly from the CFT would involve understanding the microphysics of Hawking

evaporation, and thus seems to be an extremely important goal for future work.

Since our primary object of interest will be the flat space S-Matrix, the vast majority

of our discussions of CFTs will be in the context of large N CFTs with an AdS dual that

is well-described by effective field theory. We will always discuss the correspondence in

terms of AdSd+1/CFTd, and ignore any compactification manifolds, although we expect

that they will be straightforward to include in the future. In the following subsections, we

will discuss and review some basics of CFTs and the Mellin amplitude, and provide a new,

simplified derivation of the vertices for the diagrammatic rules discovered in [2, 3].

1.1 Review

1.1.1 Space of states at large N

The Mellin representation of CFT correlation functions is best understood by thinking of

CFT correlators in analogy with flat space scattering amplitudes. The basis of this analogy

is the Hilbert space of states at large N . In flat space, one typically quantizes the theory on

flat, space-like surfaces, and chooses the Hamiltonian to be the generator of Poincaré time

translations. One then takes the spectrum of this Hamiltonian to be the basis of the space

– 5 –
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of states, which in the limit of weak interactions are the single- and multi-particle states

and form a Fock space. This space has the essential physical property that the energy of

a multi-particle state is simply the sum of the energies of the individual particles. This

description remains valid even in cases where the underlying Lagrangian of the theory is

strongly coupled, as long as the physical particles of the theory are weakly interacting.

CFTs at large N have a nearly identical structure when one studies the theory in

radial quantization, rather than the quantization in Poincaré time. That is, one takes

the “Hamiltonian” of the theory to be the dilatation operator D = ixa ∂
∂xa , which gen-

erates radial evolution by rescaling. Rather than having a definite frequency, eigenstates

of the “Hamiltonian” now have a definite scaling dimension. Such eigenstates no longer

correspond to particles per se, which anyway do not exist due to the scale-invariance of

the theory, but rather to operators, through the state-operator correspondence of radial

quantization. Simply put, the state |O〉 corresponding to an operator O is just that op-

erator acting at the origin on the vacuum: |O〉 = O(0)|vac〉. The assumption of large N

can be stated purely in terms of the gauge-invariant operators of the theory as a dynam-

ical property of their correlation functions: at N → ∞, there is a subsector of operators

of the theory whose two-point functions completely determine all correlation functions.

For instance, the four-point function of such operators is just the sum of disconnected

pieces:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 N→∞= 〈O1(x1)O2(x2)〉〈O3(x3)O4(x4)〉+ (2↔ 3) + (2↔ 4).

(1.5)

These operators are called the “single-trace” operators, and they create CFT states that

are the analogs of single-particle states in Poincaré QFT, because in the large N limit,

the multi-trace states are just a direct product of single-trace states. It is useful and con-

ventional to group all operators into irreducible representations of the conformal group,

the lowest-dimension states of which are the “primary” operators. Primary operators are

physically similar to flat-space particle states with zero total momentum, and knowledge of

their correlation functions is sufficient to determine all correlation functions of the theory.

The spatial dependence of their two-point functions is completely constrained by confor-

mal symmetry, and we will work with the following normalization for single-trace scalar

primaries:

〈O(x)O(0)〉 =
C∆

x2∆
, C∆ =

Γ(∆)

2πhΓ(∆ + 1− h)
(1.6)

where h = d
2 . Dimensions of multi-trace states are given by the sum of the individual

single-traces. In other words, given two operators O1 and O2 with dimensions ∆1 and ∆2,

then at infinite N there exists an operator “O1O2” with dimension ∆1 + ∆2, and further-

more all operators can be written as a product of the single-traces. The full space of states

is again just a Fock space, the single-trace operators giving rise to the individual creation

– 6 –
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and annihilation operators of the theory.3 We will next review how it is that Mellin space

makes this structure manifest in the correlation functions.

1.1.2 Factorization on poles in the Mellin amplitude

Specific operators appear in the Mellin amplitude in a particularly transparent way: as

poles in the Mellin variables δij . The reason is that operators are “exchanged” in correlation

functions whenever they appear in the operator product expansion (OPE) of the external

operators, e.g. for scalars

O1(x1)O2(x2) ⊃ c12Ox
∆O−∆1−∆2
12 O(x2), O3(x3)O4(x4) ⊃ c34Ox

∆O−∆3−∆4
34 O(x4), (1.7)

and this indicates that correlation functions contain a contribution with a particular scaling:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 ⊃ c12Oc34O

(
x24

x14

)∆1−∆2
(
x14

x13

)∆3−∆4 u
∆O

2 f(v)

x∆1+∆2
12 x∆3+∆4

34

,(1.8)

u =

(
x2

12x
2
34

x2
24x

2
13

)
, v =

(
x2

14x
2
23

x2
24x

2
13

)
, (1.9)

where we have used the fact that the scalar four-point function must take the form
F (u,v)

x
∆1+∆2
12 x

∆3+∆4
34

×
(
x24
x14

)∆1−∆2
(
x14
x13

)∆3−∆4

by conformal invariance. Meanwhile, the con-

tour integration over δij variables in the Mellin integral causes them to become localized

on the poles, which in this case reproduces the correct power of u when there is a pole in

the Mellin amplitude at

δLR ≡ ∆1 + ∆2 − 2δ12 = ∆O. (1.10)

It is often convenient to introduce associated with each external operator Oi(xi) a fictitious

“momentum” pi subject to the “on-shell” and “momentum-conservation” condtions p2
i =

∆i and
∑

i pi = 0. Then, the constraints
∑

j 6=i δij = ∆i are automatically satisfied formally

by the inner products δij ≡ −pi·pj . Furthermore, the poles associated with a given OPE are

in exactly the linear combination of δij ’s corresponding to the fictitious momentum-squared

flowing through the corresponding channel. For instance, note that the δLR variable above

is simply δLR = −(p1 + p2)2 = −(p3 + p4)2. This fact, combined with the Fock space

nature of the states at infinite N , is the reason for the Γ functions in the Mellin integrand

3The following familiar example may help clarify the limit of the CFT that we are considering: take the
Standard Model, currently being probed in approximately flat-space scattering experiments at the LHC,
and consider any embedding of this model in string theory in an AdS geometry with very large radius of
curvature (compared to the region where the scattering is taking place, so that scattering it still described
well by a flat-space S-matrix). The limit that we consider is first of all the limit where string modes are very
heavy, and thus are not directly observable. Because the ’t Hooft coupling is λ1/4 ∼ (mSR), where mS is the
string scale, this limit corresponds to λ� 1. The scattering energies of the holographic S-matrix are chosen
to be much greater than 1/R, so that a flat-space S-matrix description is appropriate, yet much less than
the string scale. All 1/λ corrections are therefore related to exchange of heavy string modes that decouple
from the low-energy scattering, and can therefore are simply absorbed as corrections to the coefficients
of operators in the low-energy effective Lagrangian. Finally, all the interactions in the resulting effective
Lagrangian among the low-energy asymptotic states are 1/N corrections, and these are the corrections that
we are treating in our analysis.

– 7 –
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in eq. (1.1). The point is that these Γ functions contain poles when the δij are negative

integers, which encodes the presence of multi-trace operators in the theory. For instance,

the pole in Γ(δ12) at δ12 = −m is a pole in δLR at δLR = ∆1 + ∆2 + 2m, which corresponds

to double-trace operators of the form ∂rO1∂
m−rO2. In a perturbative description in 1/N ,

it is natural to factor out these poles in the integrand from what one calls the “Mellin

amplitude” M(δij), as this separates out universal purely “kinematic” information.

One of the most important features of the Mellin amplitude is that it factors on these

poles into the Mellin amplitudes corresponding to lower-point correlation functions. In [2]

it was shown that this factorization takes the following form for the exchange of a scalar

field in AdS dual to an operator of dimension ∆O:

Res[Mn(δij)]δLR=∆O+2m = −4πh
∑
m

Γ(∆− h+ 1)m!

(∆− h+ 1)m
Lm(δij)Rm(δij),

Lm(δij) =
∑

∑
nij=m

ML
k+1(δij + nij)

k∏
i<j

(δij)nij
nij !

,

Rm(δij) =
∑

∑
nij=m

MR
n−k+1(δij + nij)

n∏
k<i<j

(δij)nij
nij !

, (1.11)

where k and n − k are the number of operators to the left and right, respectively of the

scalar propagator, and ML
k+1,M

R
n−k+1 are the Mellin amplitudes for the corresponding

(k + 1)- and (n − k + 1)-point correlation functions obtained by cutting that propagator.

Furthermore, in [2], this factorization was shown to imply the usual factorization on poles

in flat space in the holographic S-matrix of eq. (1.2).

1.1.3 Finite difference equation

Many properties of the Mellin amplitudes for Witten diagrams in AdS can be understood

most easily by using a finite difference equation that encodes bulk propagation and confor-

mal blocks. Its existence follows from the fact that propagators are solutions of the bulk

Klein-Gordon equation with a δ-function source, e.g.

[∇2
AdS −∆(∆− d)]G∆(X,Y ) = −δ(X,Y ), (1.12)

for scalars, where δ(X,Y ) is the δ-function corresponding to the covariant measure in

AdS. Furthermore, one can act with the conformal Casimir on all the external operators

inserted to the left side of the propagator in the Witten diagram, and this is equivalent to

the Laplacian acting on the bulk propagator: 1
2(
∑

i∈L Ji)
2 ∼= −∇2

AdS. One then obtains a

differential equation in position space for the correlation function,1

2

(∑
i∈L

Ji

)2

−∆(d−∆)

A = A0, (1.13)

– 8 –
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where A is the correlation function itself, and A0 is the correlation function for the same

Witten diagram but with the propagator replaced by a contact interaction. One major

advantage of Mellin space is that the differential equation in position space becomes a

finite difference equation in Mellin space, in much the same way that the Klein-Gordon

equation becomes algebraic in momentum space. For any number of external legs, this

takes the form

M0 = (δLR −∆)(d−∆− δLR)M +
∑

ab≤k<ij

(
δaiδbjM − δajδbiMaj,bi

ai,bj + δabδijM
ab,ij
ai,bj

)
, (1.14)

where δLR = −
(∑

i∈L pi
)2

=
∑

i∈L ∆i − 2
∑

i<j∈L δij , M
ab,ij
ai,bj = M(δab + 1, δij + 1, δai −

1, δbj − 1), and M0 is the Mellin amplitude for A0. The reason for the finite differences is

that conformal invariance determines the contribution from any descendant of a primary

operator Op in terms of the contribution of the primary itself, and the dimensions of the

descendants differ from those of their primaries by integers. Since the conformal blocks

are just eigenfunctions of the conformal Casimir, they satisfy this same equation with

A0 = M0 = 0, as we discuss in section 4 and derive in appendix D.

1.1.4 A simplified derivation of vertices in the diagrammatic rules

It was recently discovered [2, 3] that there are simple diagrammatic rules that rapidly

determine the amplitude for any tree-level Witten diagram in Mellin space. In [3] very

simple and general formulas for these rules were discovered empirically and conjectured to

hold more generally, whereas in [2] equivalent but more cumbersome results were proven.

Here, we will streamline the derivation of the form of the vertex factors in the diagrammatic

rules through a use of the finite difference equation that we reviewed in the previous

subsection. Let us consider the diagram that connects n 3-pt vertices to an off-shell n-pt

vertex in the middle, as depicted in figure 2. We will assume that the diagram therefore

only depends on the variables 2δi = ∆ia + ∆ib − 2δ2i−1 2i − ∆i = 2∆iaib,i − 2δ2i−1 2i and

see that this is a consistent assumption. As reviewed in the previous subsection, by acting

with the conformal Casimir on the external operators at i1 and i2, one can collapse the

internal bulk propagator δ1 to obtain a finite difference equation, which in this case reads

0 = (δLR −∆1)(d−∆1 − δLR)M + 2δ12

∑
ij>2

δijM
12,ij . (1.15)

Since M depends only on the δi combinations, we can group together δij ’s into the δi linear

combinations in the above equation:

0 = 2δ1(d− 2∆1 − 2δ1)M + 4(∆iaib,i − δ1)
∑
i≥2

(∆iaib,i − δi)M12;2i−1 2i

+2(∆1a1b,1 − δ1)

∆1 +
n∑
i=1

2δi −
n∑
j=2

4∆jajb,j

M12. (1.16)

– 9 –
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Figure 2. Internal vertex described in the text. Internal vertices with off-shell δij ’s flowing through
them can be obtained by adding on external three-point vertices.

Now, starting with the assumption that there exists a set of diagrammatic rules for the

Mellin amplitude in figure 2, we will derive the explicit form that the vertex factors of

those rules have to take. So we take the following ansatz for the Mellin amplitude:

M =
∑
mi

Xm1...mn

δi −mi
=
∑
mi

Vm1...mn

n∏
j

S(mj)V
j

3 (mj)

δi −mi
, (1.17)

where Vm1...mn is an off-shell n-pt vertex, and we have suppressed dependence on the various

dimensions. The function

S(mi) =
−2πhΓ2(∆i − h+ 1)mi!

Γ(∆i +mi − h+ 1)
(1.18)

has been associated with Mellin space propagators by convention [2, 3], although it could

also be absorbed into the definition of the vertices. The reduced vertices V j
3 (mj) are vertex

factors associated with two external lines and a single internal line, and take the form

V j
3 (mj) =

λiaibj
mj !(∆iaib,j)−mj

, (1.19)

where the coefficient λiaibj is just the Mellin amplitude for the corresponding three-point

function.4 The object X is just the total numerator, defined to simplify notation. Plugging

this in and evaluating on the poles we find

0 =
∑
mi

[
− 4m1(∆1 +m1 − h)Xm1...mn

+4(∆1a,1b,1 −m1)
∑
i≥2

(∆iaib,i −mi)Xm1−1,...mi−1,mi−1,mi+1...,mn

+2(∆1a1b,1 −m1)

(
−∆1 − 2m1 +

n∑
i=2

[2mi + ∆i]

)
Xm1−1,...

]
. (1.20)

4For example, this is λiaibj = g π
h

2
Γ
(

∆ia+∆ib
+∆j

2
− h
)∏

i=ia,ib,j
C∆i for a gφiaφibφj interaction, in our

normalization.

– 10 –



J
H
E
P
1
0
(
2
0
1
2
)
1
2
7

Now if we divide by the 3-pt vertices and propagators, the dependence on the external

dimensions goes away! This follows because

S(mj − 1)V j
3 (mj − 1)

S(mj)V
j

3 (mj)
=

∆j +mj − h
∆jajb,j −mj

. (1.21)

Thus after dividing through, we find a simpler recursion relation for V

m1Vm1...mn

=
∑
i≥2

[(∆i − h+mi)Vm1−1,...,mi−1,...,mn ]+

(
m1 +

∆1

2
−

n∑
i=2

[
mi +

∆i

2

])
Vm1−1,m2,...,mn ,

where we assume that m1 > 0. Of course we also get similar equations from each of

the n legs, for a total of n recursion relations. This formula thus provides a constructive

derivation of V , since starting from V0,...,0, one may recursively increase any of the mi’s

using the formula above; any V with a negative index is to be understood to vanish. One

can check that this recursion relation is satisfied by the compact expression for the vertex

factors conjectured by Paulos [3], which are

Vm1,...,mn = λn

(
n∏
i=1

(1− h+ ∆i)mi
mi!

)
(1.22)

×F (n)
A

(
∆Σ − h,

{ −m1, . . . ,−mn

1 + ∆1 − h, . . . , 1 + ∆n − h

}
; 1, . . . , 1

)
.

The normalization of the vertex factors is chosen here to coincide with [2], and differs

slightly from [3]. In the above expression, ∆Σ ≡ 1
2

∑n
i=1 ∆i , and F

(n)
A is a Lauricella

function:

F
(n)
A

(
g,

{
a1, . . . , an
b1, . . . , bn

}
;x1, . . . , xn

)
=

∞∑
ni=0

(
(g)∑ni

n∏
i=1

(ai)ni
(bi)ni

xnii
ni!

)
. (1.23)

The coefficient λn is independent of mi, and should be chosen so that V0...0 is the on-shell

n-point Mellin amplitude corresponding to the n-point vertex in figure 2. For gφn,

λn = g
πh

2
Γ(∆Σ − h)

n∏
i=1

C∆i . (1.24)

In summary : to compute any tree-level Witten diagram in a theory of scalars interact-

ing via contact interactions, one draws all appropriate diagrams, just as in flat space-time.

To each vertex one associates a factor of the coupling times Vm1,...,mn , setting mi to zero

for the external lines. To each propagator one associates a factor of

S∆i(mi)

δi −mi
(1.25)
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Figure 3. This figure shows the pole prescription for the contour integrals defining the Mellin
representation, as a function of δ12 and δ13, for the very simple 4-pt example in equation (1.26).
One can see that the contour of integration lies between the poles of the Γ functions (black) and
the poles of the Mellin amplitude (red) in each variable, including δ14 = ∆φ − δ12 − δ13.

where δi is the linear combination of δij appropriate to a given propagator. The combination

δi can be most easily computed by associating fictitious momenta pi to each operator,

computing 2δI = (Σipi)
2 −∆I , and setting p2

i = ∆i and pi · pj = −δij . Finally, one sums

over all mi associated with internal lines.

1.1.5 A simple example — µφ3 Theory at Tree Level

Let us now give the simplest possible example of a non-trivial Mellin amplitude. If we take

d = ∆φ = 2 and compute the Mellin amplitude corresponding to 1
6µφ

3 theory in AdS3, we

find

M(δij) =
R3µ2

2(4π)3

(
1

δ12 − 1
+

1

δ13 − 1
+

1

δ14 − 1

)
(1.26)

The result is extremely simple because the (often infinite) sums in the definitions of the

diagrammatic rules terminate for certain special values of the dimensions, as can be seen

by inspection of equation (1.22). Besides displaying for the reader how simple and natural

Mellin amplitudes can be, this example affords an opportunity to see in figure 3 the pre-

cise pole prescription for the contour integrals defining the CFT correlator in the Mellin

representation.

2 The flat space limit

Penedones has conjectured [1] that the connected part of the S-Matrix of the bulk theory

dual to a large N CFT can be obtained from a simple integral transform of the Mellin

– 12 –



J
H
E
P
1
0
(
2
0
1
2
)
1
2
7

amplitude

T (sij) = lim
R→∞

1

N δd+1

(∑
i

pi

)∫ i∞

−i∞
dα eααh−∆ΣM

(
δij = −R

2sij
4α

,∆a = Rma

)

N =
πhR

n(1−d)
2

+d+1

2

n∏
i=1

C∆i

Γ(∆i)
, (2.1)

where we have introduced the short-hand symbol ∆Σ = 1
2

∑
i ∆i for half the sum of the

external dimensions, and ∆a are the dimensions of internal fields to which we wish to assign

a non-zero mass in the flat space limit.5 The integration contour in the α plane runs to

the right of all poles of the Mellin amplitude, and the branch cut from αh−∆Σ . Penedones

provided many pieces of evidence for equation (2.1), showing that it works for tree-level

and one-loop 4-pt amplitudes, and that it accords with earlier observations [12] about

a certain singularity in CFT correlators connected with flat space scattering amplitudes.

This evidence was further bolstered when it was shown in [2, 3] that Mellin amplitudes

can be constructed directly from diagrammatic rules that reduce to the standard Feynman

rules in the flat space limit. In effect, this proved that equation (2.1) is correct for all tree

amplitudes in scalar field theories.

In what follows we will prove equation (2.1) exactly for massless external scalar parti-

cles (internal ‘virtual’ particles can be massive or massless) using the constructions of [10–

13]. The flat space S-Matrix can be extracted from AdS/CFT correlation functions in a

straightforward manner; here we will only give a brief summary and refer the readers to [13]

for a thorough discussion. A similar direct quantization of AdS fields was given by [28–30]

in the early days of AdS/CFT, and has been revisited in detail recently by [31].

Individual particles are created by single-trace CFT Operators in the large N limit.

We would like to prepare and then measure scattering states that correspond to many

particles with definite energy and momentum in the center of AdS. To create a massless

particle in a plane wave state with energy ω and velocity v̂ that passes through the center

of AdS at time t = 0, we act with the single-trace operator O(t, x̂) on the vacuum as

|ω, v̂〉 =
2∆Γ(∆)R

d−3
2

(2π)h+1C∆(Rω)∆−1

∫ −πR
2

+τ

−πR
2
−τ

dteiωtO(t,−v̂)|0〉 (2.2)

where τ � R so that the in and out operators have non-overlapping support [32], and ∆ is

the dimension of O. The prefactor in front of the integral normalizes these states so that

〈ω, v̂|ω′, v̂′〉 = 2ωδdτ (~p+ ~p ′) (2.3)

where the delta function is regulated by the length scale τ (we have included the derivation

in appendix B.1). Next we send R → ∞ followed by τ → ∞ to take the flat space limit,

5In the case where the flat-space scattering amplitude on the l.h.s. above contains IR divergences, the
r.h.s. will contain terms that grow as R is taken to infinity. In order to compare expressions with a finite
R→∞ limit, only IR-safe observable amplitudes should be calculated.
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Figure 4. This figure shows how bulk scattering processes are setup in AdS/CFT. Creating the
initial state involves smearing CFT operators over an annulus, which is just Sd−1 × [−τ, τ ] on the
cylinder bounding AdS. The integration over space and (dilatation) time in the CFT is necessary
to select the direction and magnitude of the bulk momenta, respectively. The regulator τ can be
taken to infinity in the flat spacetime limit. The final state is measured after a time πR, so that
the particles have the opportunity to scatter exactly once.

keeping the physical energy ω fixed. To prepare a multi-particle in-state one simply acts on

the vacuum with several different single-trace operators. One measures the out-states in an

identical way, except replacing −πR
2 → πR

2 , v̂ → −v̂, and taking the Hermitian conjugate.

The overlap between the in-states and the out-states extracts the S-Matrix for plane waves

from a CFT correlation function.

Now we will apply this procedure to the Mellin representation of the CFT correlator

and derive equation (2.1). AdS in global coordinates translates into a Lorentzian radial

quantization of the CFT, so the operator corresponding to the ith particle will be located

at xi = eiti p̂i in the d-dimensional spacetime where the CFT lives. This means that up to

a normalization factor coming from the single-particle states, the S-Matrix is given by the

integral and limit

T (sij) ∝ lim
R
τ
,τ→∞

∫
[dδ]

∫ τ±πR
2

−τ±πR
2

dtie
iωitiM(δij)

∏
i<j

(
cos

(
ti − tj
R

)
− p̂i · p̂j + iε

)−δij
Γ(δij)

(2.4)

where the particles have energies ωi, and the measure of integration [dδ] is given in ap-

pendix A.1. Our task is to simplify and evaluate these integrals. This will be possible

because in the flat spacetime limit, it will turn out that the ti dependence is approximately

Gaussian and that typically δij ∼ R2, so that the Γ functions can be expanded in the Stirling
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approximation. Then the δij integrations can be performed in the stationary phase approx-

imation, which will imply that δij ∝ sij and give a momentum conserving delta function.

Now let us begin to evaluate the integrals. First note that either |ti− tj | � R, if both

particles i and j are initial or final, or else |ti−tj−πR| � R, if the ith particle is in the final

state and the jth is in the initial state. This means that we can approximate the cosine

by its Taylor expansion. But now the only difference between initial and final states is the

sign of their momenta, so we can drop the distinction between initial and final states in the

time integrals. This just reproduces the familiar fact that we can assign all of the particles

in a scattering amplitude to the in-state via analytic continuation. Furthermore, we must

anticipate that the flat-space S-matrix will contain a momentum-conserving δ-function. As

discussed in [13], this is an immediate consequence of the spacetime symmetries — since

the conformal algebra reduces to the Poincaré algebra in the flat space limit, translations

will be a good symmetry in that limit, and momentum will be conserved. We will not

a priori demand that the total momentum vanish; for convenience, then, let the center

of mass momentum be ~q ≡ 1
n

∑
i ~pi, and introduce shifted momenta ~p′i ≡ ~pi − ~q that do

conserve momentum. Since ~q will eventually be constrained to vanish in the flat-space

limit, we will consider it to be parametrically smaller than the pi’s, which grow ∝ R.

Expanding the (ti − tj) dependent factors around the initial and final times ±πR
2

simplifies the integrand, giving

∫
[dδ]

∫ τ

−τ
dtie

iωitiM(δij)
∏
i<j

Γ(δij)

(
sij
ωiωj

−
t2ij
R2

)−δij
, (2.5)

where we have defined tij = ti − tj . Note that the overall time
∑

i ti only appears in

the exponent, so one could immediately integrate over this direction to give an energy

conserving delta function, removing a single time integration variable. Now we will re-

parameterize the δij variables in a way that accords with the structure of the kinematics

and the integral. The momenta pi do not necessarily obey momentum conservation, so we

can define

s′ij = sij −
2n

n− 2
q · (pi + pj) +

2n2

(n− 1)(n− 2)
q2, (2.6)

so that
∑

j 6=i s
′
ij = 0. Now the s′ij are appropriate for on-shell states with momentum

conservation. Let us take

δij = −R
2

4α

(
s′ij + εij

)
+ ∆ij , (2.7)

where we constrain

∀ i,
∑
j 6=i

εij = 0 and
∑
j 6=i

∆ij = ∆i, (2.8)

so that the δij satisfy the usual constraints and the α parameter deforms the δij in a

direction orthogonal to the εij . This means that between α and the εij , there are n(n−3)/2

free variables, as expected for the δij . There is of course a Jacobian factor from this change
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of integration variables which includes a factor of α−
n(n−3)

2
−1, and also a single factor of

s′ij due to the α direction. We will perform the εij integrations by saddle point, and we

will see shortly that the saddle point is at εij = 0 in the large R limit, so that only the α

parameter remains as an integration variable.

Next, let us expand the Γ functions and sij exponent at large δij :

∏
i<j

Γ(δij)

(
sij
ωiωj

−
t2ij
R2

)−δij

≈
(

(4π)(4α)

R2

)n(n−1)
4

(
R2

4α

)∆Σ

∏
i<j

(
(s′ij + εij)ωiωj

sij

)∆ij

∏
i<j

(
s′ij + εij

)− 1
2


× exp

−∑
i<j

R2

4α

(
s′ij + εij

)
log

 s′ij + εij

sij
ωiωj
− t2ij

R2

 (2.9)

In what follows we will assume that these factors dominate the integrand in the flat space

limit. This assumption could be violated if the Mellin amplitude grows exponentially or

faster at large δij . Such growth would also call into question the convergence of the Mellin

representation for the CFT correlator itself, but we cannot definitely rule it out. Including

the Jacobian from the change of δij variables, the prefactor becomes

1

α

(
R2

4α

)n(n−3)
2

(R2)∆Σ−n(n−1)
4 (4π)

n(n−1)
4 (4α)

n(n−1)
4
−∆Σ

[∏
i

ω∆i
i

]∏
i<j

s
′− 1

2
ij

 δτ (∑
i

ωi

)
(2.10)

We see that the α−∆Σ factor has appeared as needed to reproduce the identical factor in

equation (2.1), while the other factors must cancel against the normalizations of the single

particle states in equation (2.2) and the terms from the integrals below. The argument of

the exponential can be expanded and greatly simplified to give

exp

itω +
t2ω
4α
− R2

4α

−(nq)2 +
∑
i<j

u2
ij

2s′ij

 (2.11)

where we have defined tω =
∑

i tiωi and

uij = εij −
2n

n− 2
q · (pi + pj) +

t2ijωiωj

R2
. (2.12)

We can now see equation (2.1) beginning to take shape. Since nq is just the sum of the

momenta, at large R the Gaussian factor becomes a momentum conserving delta function

multiplied by αh. Furthermore, performing the Gaussian integral over tω would provide

the crucial eα factor present in equation (2.1). Finally, to complete the derivation we must

integrate over uij subject to the constraints on εij from equation (2.8). If we were to ignore

the constraints, this computation would be trivial, but introducing Lagrange multipliers
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to incorporate the constraints and fix the range of integration over the time variables ti
requires several more straightforward but lengthy computations, which we have relegated to

appendix B.2. Schematically, starting from (2.11), the constrained uij integrations cancel

−1/2 + n(n − 3)/4 factors of α and R2 from the prefactor. The subsequent integration

over all time coordinates produces the energy-momentum conserving delta function and

an additional αh−
n
2

+ 3
2 , canceling the remaining factors of sij and ωi. This gives the final

result

T (sij) = lim
R→∞

1

N δd+1

(∑
i

pi

)∫ i∞

−i∞
dα eααh−∆ΣM

(
δij = −R

2sij
4α

)
(2.13)

for the connected part of the S-Matrix, as desired.

3 From meromorphy to analyticity

Our goal in this section will be to understand how the familiar analyticity properties of

the S-Matrix follow from the flat space limit of the Mellin amplitude. Specifically, we want

to investigate branch cuts corresponding to the emission of multi-particle states and poles

corresponding to finite-lifetime resonances. On very general grounds, the Mellin amplitude

is expected [2, 4, 5] to have only simple poles on the real axis, so the more intricate analytic

structure of the S-Matrix must emerge from the coalescence and resummation of the poles

of the Mellin amplitude.

3.1 AdS exchanges

Let us begin by computing the flat space limit of the Mellin amplitude corresponding to

the exchange of a massive field in the bulk of AdS. This result will be very useful because

in the next section we will express loop amplitudes as sums over bulk exchanges, via a

procedure reminiscent of the Källen-Lehmann representation [33].

To begin with, we can write the Mellin amplitude for an exchange as a sum

M(δij) =
∑
m

Rm
δ − (∆5 + 2m)

, (3.1)

where for a 2-to-2 s-channel exchange, δ = ∆1 + ∆2 − 2δ12 and ∆5 is the dimension of the

operator dual to the bulk field being exchanged. The residue was first computed in [1] and

can be easily obtained from the diagrammatic rules [2, 3], it is

Rm = −R5−2h Γ(∆125, − h)Γ(∆345, − h)

(4πh)3
∏4
i=1 Γ(∆i − h+ 1)

× (1−∆12,5)m(1−∆34,5)m
m!Γ(∆5 − h+ 1 +m)

, (3.2)

where we will often use the notation 2∆a1...ak,b1...bl = Σk
i ∆ai − Σl

j∆bj . In the flat space

limit, the bulk energies dual to CFT dimensions must be taken to be very large compared

to the curvature scale 1/R in AdS, so that in particular as R→∞ we must have ∆5 ∝ R
and δ ∝ sR2 for a massive exchange. This means that Rm is dominated by large values of
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m so that m ∼ ∆2
5 ∝ R2, and we find that

Rm = C

(
mh−∆1234,e−

∆2
5

4m

)
, (3.3)

where the proportionality constant C is

C = −R
2

2

(
∆2

5

4

)∆1234−h−1

N . (3.4)

and N is the normalization factor from equation (2.1). Now, when we take the flat space

limit of the Mellin amplitude, we can replace the sum over m with an integral, giving

T (s) =
C

N

∫ i∞

−i∞

dα

2πi
αh−∆1234eα

∫ ∞
0

dm
mh−∆1234e−

∆2
5

4m

R2s
2α − (∆5 + 2m)

, (3.5)

where the integration contour in α runs to the right of all the poles and the branch cut

(which arises due to the irrational power in the definition of the flat space limit), and

2∆1234 = ∆1 + ∆2 + ∆3 + ∆4. To compute these integrals, we can deform the α contour

to pick up a contribution from the poles and a contribution from the discontinuity across

the branch cut. Changing integration variables from m to x = 1/m for convenience, the

pole contribution is

1

2

∫
dx e−x

s−∆2
5

4

(
−sR

2

4

)1+h−∆1234

=
2

sR2 −∆2
5

(
−sR

2

4

)1+h−∆1234

(3.6)

We see that the result has a pole in the correct place, but there is an unusual-looking

overall s-dependent factor. The contribution from the branch cut is

sin(π(1 + h−∆1234))

π

∫ ∞
0

dα

∫ ∞
0

dxe−α
(α
x

)1+h−∆1234 2e−
x∆2

5
4

−R2sx+ 4α
. (3.7)

It is easy to evaluate these integrals by changing integration variables from x to y = x/α,

which makes the dα integration and subsequent dy integration straightforward, giving

2

sR2 + ∆2
5

(
−
(
−sR

2

4

)1+h−∆1234

+

(
∆2

5

4

)1+h−∆1234
)

(3.8)

Thus, the branch cut piece combines with the pole piece to cancel off the strange s-

dependence, and incorporating the overall coefficient leaves us with the expected flat space

propagator

T (s) =
1

s−m2
5

(3.9)

where m5 ≡ ∆5/R.
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3.2 Computing loop diagrams a la Källen-Lehmann

In flat spacetime, the two point functions of local operators can always be decomposed in

the Källen-Lehmann representation [34] as

〈Φ(k)Φ(−k)〉flat =

∫ ∞
0

dµ
ρ(µ2)

k2 + µ2 + iε
(3.10)

where the function ρ(µ) is positive and real. This decomposition follows from unitarity and

Lorentz invariance [34], and it expresses the two point function of general operators as a

sum over the two point functions of free fields with different masses. Now we will compute

some simple loop amplitudes by using the AdS analog of this representation, which was

first discussed in [33] long before the discovery of AdS/CFT.

Consider computing the standard 1-loop bubble diagram from λφ4 theory in AdS,

which is pictured in figure 5. In position space, this would require us to calculate∫
dd+1Xdd+1Y G∆1(P1, X)G∆2(P2, X)G∆(X,Y )2G∆3(Y, P3)G∆4(Y, P4) (3.11)

The only difference between this calculation and the computation of a tree level exchange

in φ2χ is the replacement of the single propagator G∆χ(X,Y ) with the propagator squared

G∆(X,Y )2. But the square of the bulk-to-bulk propagator is just the two point function

of the local bulk field φ2, so that

G∆(X,Y )2 =
〈
φ2(X)φ2(Y )

〉
(3.12)

Let us compute this two-point function with a Mellin space Källen-Lehmann representation.

This means that we will write

G∆(X,Y )2 =
∑
n

N2,∆(n)G2∆+2n(X,Y ) (3.13)

Using the diagrammatic rules [2, 3] from section 1.1.4 it becomes trivial to compute the

loop diagram once we know N2,∆. One can compute the function N2,∆(n) in Mellin-space,

but a direct derivation via an inner product, as was used in [17], is probably the simplest

method. In appendix C we show that for any two scalar propagators

G∆1(X,Y )G∆2(X,Y ) =
∑
n

a∆1,∆2(n)G∆1+∆2+2n(X,Y ), where (3.14)

a∆1,∆2(n) =
(h)n

2πhn!

(∆1 + ∆2 + 2n)1−h(∆1 + ∆2 + n− 2h+ 1)n
(∆1 + n)1−h(∆2 + n)1−h(∆1 + ∆2 + n− h)n

.

and recall that the Pochhammer symbol (x)y = Γ(x+ y)/Γ(x), and 2h = d, the spacetime

dimension of the CFT. It is useful to note that for ∆ � n, as required for the flat space

limit, we have

N2,∆(n) = a∆,∆(n) ≈ 2

(4π)hΓ(h)
n2(h−1). (3.15)
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Figure 5. This figure shows the 1-loop and 2-loop diagrams that we have computed using the Mellin
space version of the Källen-Lehmann representation. Further generalizations are straightforward.

This means that in this limit N2,∆(n) has a simple power law dependence on the parameter

n which determines the energy of the bulk states being exchanged.

There is no need to stop at 1-loop.6 For example, in gφ5 theory at 2-loops there is

a 4-pt bubble diagram involving three propagators, as pictured in figure 5, which we can

easily compute. We see that

G∆(X,Y )3 =
∑
n

N3,∆(n)G3∆+2n(X,Y ), (3.16)

where we have that

N3,∆(n) =

n∑
m=0

a∆,∆(m)a∆,2∆+2m(n−m). (3.17)

It is a non-trivial task to perform the sum explicitly. However, it is easy to take the flat

space limit of the sum:

N3,∆(n) ≈
∫ n

0
dm

4(n2 −m2)2(h−1)

(4π)2hΓ2(h)
=

n4h−3

2(2π)2h(h− 1
2)hΓ(h)

. (3.18)

This has precisely the correct scaling in n for the Källen-Lehmann representation of the

2-loop bubble diagram of figure 5 in 2h+ 1 dimensions.

3.3 Branch cuts and resonances

Now let us see how two familiar non-analytic features of scattering amplitudes, namely

branch cuts from multi-particle intermediate states and finite-width resonances from un-

stable particles, arise from the Mellin amplitude.

These phenomena are both connected with the flat spacetime limit, where the AdS

length R → ∞. However, they do not depend on the intricacies of AdS/CFT, but are in-

6We apologize to readers uninterested in juvenile computational showmanship.
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E E

Figure 6. This figure shows how poles in the integrand of a contour integral lead to branch cuts
in the result, due to the necessity of deforming the contour as the pole moves.

stead generic consequences of defining a theory inside a finite ‘box’ and then taking the size

of the box to infinity. AdS acts as an IR-regulating cavity, and in the flat spacetime limit

the cavity’s volume becomes infinite, so that the discrete spectrum of modes approaches a

continuum. Branch cuts can arise in this limit when a line of poles coalesces, because the

separation between poles and the residues of each pole are both proportional to 1/R. The

sum over the discrete spectrum becomes indistinguishable from an integral, and as shown

in figure 6 such integrals develop branch cuts due to the poles of their integrands. Re-

summing propagators with branch cuts, as is necessary for the central diagram of figure 5

for µφ2χ theory, leads to finite-width χ particles. Thus the Mellin amplitude, whose poles

all lie on the real axis, can produce poles off the real axis in the S-Matrix.

Let us first see how branch cuts arise at 1-loop in λ
24φ

4 theory, for the first diagram in

figure 5. For this purpose we need to take the flat space limit of equation (3.13). We saw in

section 3.1 that an AdS propagator G∆ → 1
s−(∆)2 in the flat space limit, so we can directly

use the function we derived in equation (3.14) to find the 1-loop scattering amplitude in
λ
24φ

4 theory. In the flat spacetime limit the sum over n becomes an integral, and so we can

use the large n approximation in equation (3.15), giving

M1−loop(s) =
2λ2

(4π)hΓ(h)

∫ ∞
0

dn
n2(h−1)

s− (2∆ + 2n)2
(3.19)

Note that this is precisely of the form expected from the Källen-Lehmann representation

of the bulk theory in flat spacetime, and it agrees with the usual result for λ
24φ

4 theory in

2h+ 1 dimensions. Similarly, the 2-loop result in gφ5 theory is

M2−loop(s) ∝
∫ ∞

0
dn

n4h−3

s− (3∆ + 2n)2
(3.20)

in the flat space limit, again in the Källen-Lehmann representation. This has the correct

scaling for this theory in 2h+ 1 bulk dimensions.
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++ + · · · = ( )

(1− )
Figure 7. This figure shows the standard picture of how 1-PI diagrams are resummed to shift
propagator poles. This familiar momentum-space process also works in Mellin space.

From equations (3.19) and (3.20) we can immediately see why the loop amplitudes

have branch cuts. As pictured in figure 6, when a pole of the integrand moves across the

contour of integration, the contour must be deformed around the pole. If the poles makes

a complete circle about an endpoint of the contour, then the contour can return to its

original location, but it must also include a tiny circle about the pole. Thus the residue of

the integrand’s pole becomes the discontinuity across the branch cut of the integral.

Now let us discuss how we obtain resonances in the flat space limit, beginning with the

Mellin space version of the resummation of 1-PI diagrams, which is pictured in figure 7. If

we compute the resummed diagram corresponding to the one-loop 1-PI diagram in µφ2χ

theory, we find

M sum = µ2
∑
m1,m2

V12,∆χ(m1)S∆χ(m1)

δ − (∆χ + 2m1)
×
[

1

1−Πmi,mj (δ)

]
m1,m2

× V∆χ,34(m2) (3.21)

where we have the infinite dimensional matrix in mi space

Πm1,m2(δ) = µ2
∑
m3

[∑
n

(
N2,∆φ

(n)
V∆χ,2∆φ+2n(m1,m3)S2∆φ+2n(m3)

δ − (2∆φ + 2n+ 2m3)

)
×
V2∆φ+2n,∆χ(m3,m2)S∆χ(m2)

δ − (∆χ + 2m2)

]
(3.22)

We have written this result so that the first term is simply the answer for χ-exchange at tree

level. The first line of the expression for Π gives the Källen-Lehmann-type representation

for the 1-loop bubble diagram, and the second line provides the final χ-propagator, with

the last term replacing the final vertex in the tree-level χ-exchange. Since in position space

in AdS we are connecting pairs of propagators, we must use 2-pt vertex functions which

follow from the vertex rule in equation (1.22).

We would like to see that Π develops an imaginary piece from the loop in the flat space

limit, where we take ∆χ = mχR and δ = −R2s
4α as usual, but we leave ∆φ finite so that the

φ particles become effectively massless. In this limit, the Mellin amplitude is dominated by

terms in the sums with mi ∝ (R∆)2. Rather than performing the sums in eq. (3.21), (3.22)

directly, we will again take advantage of the fact that the bubble in the diagram can be

written as a sum over single propagators corresponding to the double-trace operators, as

in eq. (3.14). Written this way, the bubble diagrams are identical in form to the mixing

of χ with an infinite tower of states of dimensions 2∆φ + 2n for n ≥ 0. The contribution
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from these states can be determined by diagonalizing the mass matrix

m2
eff =


∆2
χ R2λeff(0) R2λeff(1) R2λeff(2) · · ·

R2λeff(0) (2∆φ)2 0 0 · · ·
R2λeff(1) 0 (2∆φ + 2)2 0 · · ·
R2λeff(2) 0 0 (2∆φ + 4)2 · · ·

...
...

...
...

. . .

 , (3.23)

where

λeff(n) ≡ λ

√
N2∆φ

(n)

R2h−1
(3.24)

is the effective off-diagonal mass-mixing term, and we have approximated mass as dimen-

sion since we are interested in the flat-space limit. The factor of N2∆φ
(n) accounts for the

phase space of the 2-particle φ states, so that their contribution to the two point function

can be understood via mixing. One finds that with this coupling, the mixing amplitude

also correctly computes the decay rate of χ → 2φ particles. Note that there is nothing

particularly ‘holographic’ about this method; one would use identical techniques to under-

stand how resonances arise when one restricts a quantum field theory to a finite sized box

with a discrete spectrum.

We expect that the sum of all 1-PI diagrams must be given by the Mellin amplitude

that would arise from adding a mass mixing term as in eq. (3.23) above, but let us see how

we could obtain this result directly by using the functional equation. First, note that when

we act with the functional equation on the Mellin amplitude M for the resummation of

1PI diagrams, we just obtain M back again, plus a constant for the reduction of the single

propagator:

m2
effM(δLR) = (−δLR(δLR − d)−∆(d−∆))M(δLR)− (δLR − 2∆)2M(δLR − 2)− 1(3.25)

We have extended M(δLR) to a matrix whose first row and column correspond to χ propa-

gation, so that only the M11 element actually appears in the φ four-point amplitude, while

the rest of the matrix involves mixing with two particle φ states. Now, this clearly takes

the form of a mass-mixing, and the matrix operation on M(δLR) can be diagonalized. Let

the ath eigenvalue of the mass matrix be ∆a, then we may write the corresponding Mellin

amplitude as

M(δij) =
∑
a

S1aDa(δLR)STa1,

Da(δLR) =
∑
m

Rm(∆a)

δLR − (∆a + 2m)
(3.26)

where Rm is the formula for the residues from eq. (3.2) with dimension ∆a, and Sij is the

matrix of eigenvectors of eq. (3.23). We already established in section 3.1 that the flat

space limit of Da is simply a propagator with mass ∆a, so we can use these equations to

compute the flat space limit of the sum of 1-PI propagators pictured in figure 7.
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To see how the imaginary piece of the pole in the holographic S-matrix emerges, we

need only study the eigen-decomposition of m2
eff in the flat-space limit with s very near the

real part of the pole, so that s = ∆2
χ + δs. In this limit the mixing terms are dominated

by double-trace operators with dimension near ∆χ, where ‘nearness’ is determined by the

magnitude of λeff . Replacing the sum on dimensions ∆a with an integral over a parameter

η in the flat space limit, we see that for small δs we can approximate

S2
1a(η) ∼ λeffR

mχ

1

η2 +
R2λ2

eff
m2
χ

. (3.27)

where we are evaluating λeff at n = Rmχ. This simply means that the number of modes

that mix significantly with χ is proportional to Rλeff/mχ. Considering the entries of

meff near 2∆φ + 2n = ∆χ, one finds that in the continuum limit the eigenvalues can be

approximated by δs+λeffη, so using the results of section 3.1 on the flat space limit of the

propagator Dn∗(δLR), we find that the sum of 1-PI diagrams can be approximated by

∫ ∞
−∞

dη

λeffR

mχ

1

η2 +
R2λ2

eff
m2
χ

 1

δs+ λeffη + iε
≈ iπ

δs+ iλ2m2h−3
χ

(3.28)

which shows the usual Breit-Wigner structure, with a resonance pole that has moved off

of the real axis. One can obtain a more precise result by diagonalizing the m2
eff matrix

numerically.

3.4 A comment about meromorphy and locality

An extremely interesting example of how bulk locality can be rigorously derived from

conditions on a CFT was provided by the analysis of [16, 19]. In that case, it was assumed

that the spectrum of low-dimension operators in the CFT included only a finite number

of single-trace scalar primaries and that 1
N corrections affected conformal blocks only up

to a maximum spin L. By imposing crossing symmetry on the CFT correlation functions

and then counting the dimension of the space of possible solutions, the authors of [16] were

able to show that all such CFTs have local AdS dual descriptions. It is interesting to see

how this result is reproduced in terms of analyticity of the holographic S-matrix.

The point is that, as was explained in [1], such solutions must have Mellin amplitudes

that are polynomials in δij ’s. This is easy to see by noting that the presence of a pole in the

Mellin amplitude will immediately require the inclusion of conformal blocks of arbitrarily

large spin. For example, a pole in δ12 in the Mellin amplitudes for a CFT 4-point correlator

implies an equivalent pole in δ13, due to crossing symmetry. But the decomposition of

the δ13 pole in the 12-34 channel (the ‘s channel’) will contain arbitrarily high powers of

δ13, implying the presence of arbitrarily large spins. Thus a Mellin amplitude with only

conformal blocks of bounded spin cannot have any poles, and similarly it cannot included

exponential dependence on the δij , so it must be a polynomial. However, we know that

polynomial Mellin amplitudes turn into S-Matrices that are polynomials in the Mandelstam

invariants sij , and that are therefore obviously analytic and exponentially bounded.
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4 Conformal blocks and black holes

The simple unitarity relation that follows from inserting 1 as a sum over states

A4(xi) =
∑
α

〈O1(x1)O2(x2)|α〉〈α|O3(x3)O4(x4)〉 (4.1)

provides an interesting method for representing CFT 4-pt functions, via the operator-state

correspondence. This follows because we can express any primary state in the sum as

|αp〉 = Oα|0〉 for some local primary operator Oα, and then the properties of all of the

descendent states will be fixed by conformal invariance. The functional form contributed

to a 4-pt function by the exchange of a primary state/operator of dimension ∆ and angular

momentum ` along with all of its descendants is called a conformal block [21, 23, 27, 35].

We can write any CFT 4-pt function or 4-pt Mellin amplitude as a sum over conformal

blocks

M4(δij) =
∑
α

C(∆α, `)B∆α,`(δij) (4.2)

where the coefficients C(∆α, `) are determined by the magnitude of the 3-pt functions of

primary operators. For a very readable discussion of conformal blocks and their applications

in constraining the properties of CFTs, see [20].

We will make more extensive and essential use of conformal blocks in our forthcoming

work on the unitarity of the S-Matrix [9], but for now we provide these objects as an

example of interesting functions on Mellin space that are not strictly analytic in the flat

space limit. Since conformal blocks correspond to the exchange of an operator with definite

angular momentum and definite dimension, in the flat space limit they must also have

definite angular momentum and definite energy. This suggests that the flat space limit of

a conformal block should be

B∆,`(δij)→ P`(cos θ)δ(s−∆2) (4.3)

where P` is just the appropriate Legendre or Gegenbauer polynomial. We will derive this

fact in the next section, but note that it gives a direct connection between the Bootstrap

program for solving CFTs and the S-Matrix program for determining scattering amplitudes.

It suggests that the Bootstrap program, even for special theories such as N = 4 SYM,

should be at least as challenging as using analyticity and unitarity to directly construct

the full non-perturbative S-Matrix of superstring theory.

In the flat space limit, the conformal block decomposition turns into a trivial inte-

gral over CFT dimensions, and we find that the partial wave decomposition of the 2-to-2

scattering amplitude must simply be

S`(s) = C(
√
s, `) (4.4)

where we have used the symbol S to emphasize that this is the full scattering amplitude,

including the ‘1’ piece. This means that we can use known properties of bulk scattering

amplitudes to constrain the conformal block decomposition of dual CFTs. In section 4.2 we
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will use the expected form of the trans-Planckian scattering amplitudes corresponding to

Hawking evaporation to make a general comment about the conformal block decomposition

in CFTs with AdS duals that are well-described by effective field theory.

4.1 Flat space limit of a conformal block

Now we will directly compute the flat space limit of the conformal blocks, which we review

in Mellin space in appendix D. As Mack [4] showed, in Mellin space the conformal blocks of

angular momentum ` and dimension ∆ in the s-channel have only a polynomial dependence

on the δ13 and δ14 variables analogous to the mandelstam invariants t and u. Although

these Mack polynomials appear somewhat complicated, they simply encode the fact that

the conformal blocks have a fixed angular momentum, and in the flat space limit they

reduce to Legendre or Gegenbauer polynomials in cos θ. We show these straightforward

but technical facts in appendix D.

The Mack polynomials multiply a universal function that encodes a more interesting

dependence on δ12, analgous to the mandelstam invariant s, and ∆, the dimension of the

conformal block. This function takes the form7

B`
∆(δ) = eπi(h−∆)

(
eiπ(δ+∆+`−2h) − 1

) Γ
(

∆−`−δ
2

)
Γ
(

2h−∆−`−δ
2

)
Γ
(
∆a − δ

2

)
Γ
(
∆b − δ

2

) (4.6)

The factor in parentheses cancels the ‘shadow’ poles associated with the second Γ function

in the numerator, so that we are left with only physical poles associated to a single primary

operator. The normalization factor has been chosen to ensure that the residues of the

physical poles are real. The variables 2∆a ≡ ∆1 + ∆2 and 2∆b ≡ ∆3 + ∆4 are defined for

convenience.

When we take the limit R → ∞, we must take ∆ = MR while fixing the angular

momentum ` to be a finite integer, so that the conformal block will have a non-zero bulk

energy M in the flat space limit. Note that in this limit there is no difference between the

dimension and twist of the block. Plugging B`
∆(δ) this into our formula for the flat space

limit gives

lim
R→∞

∫ i∞

−i∞

dα

2πi
eααh−∆1234eπi(h−∆)

(
eπi

R2s
2α − 1

) Γ
(
R2s
2α −∆12,5

)
Γ
(
R2s
2α − ∆̃12,5

)
Γ
(
R2s
2α

)
Γ
(
R2s
2α −∆12,34

) (4.7)

7We thank J. Penedones, S. Raju, and B. van Rees for discussions and collaboration on conformal blocks
in the Mellin representation, and in particular for collaboration leading to the discovery of the factor in
parentheses in this equation.

It should also be noted that we are using a different normalization convention from most of the recent
literature on conformal blocks. For instance, to convert to the normalization used in [16], with ∆1 = ∆2

and ∆3 = ∆4, one should take eq. (4.6) and multiply by

N `
∆ =

iπ2−l−1 csc2
(

1
2
π(∆ + 2h)

)
Γ(−h+ ∆ + 1)Γ(l + ∆)(−2h+ ∆ + 2)−l

Γ
(
l
2

+ ∆
2

)2
Γ
(

1
2

(
∆− 2

(
h+ l

2
− 1
)))2 , (4.5)

and use N `
∆B

`
∆(δ).
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where 2∆12,5 = ∆1 + ∆2 −∆− ` and 2∆̃12,5 = ∆1 + ∆2 − 2h− `+ ∆. Since we are taking

the AdS scale to infinity, we can expand the Γ functions using Stirling’s approximation,

giving

lim
R→∞

∫ i∞

−i∞

dα

2πi
eααh−∆1234eπi(h−∆)

(
eπi

R2s
2α −1

)(R2s

2α

)∆1234−h− (̀
1+

α∆

R2s

)−∆12,5
(

1− α∆

R2s

)−∆̃34,5

(4.8)

In the flat space limit, ∆5 ∝ R, so the last two terms can be approximated by exponentials

of small quantities. Note that for ` = 0, the powers of α clearly cancel. When ` > 0, we

must also include the Mack polynomials, which are homogeneous in the flat space limit,

providing an overall factor of α−` so that again, the power-law dependence on α in the

integrand cancels. We find

lim
R→∞

(
R2s

2

)∆1234−h−` ∫ i∞

−i∞

dα

2πi
eπi(h−∆)

(
eπi

R2s
2α − 1

)
e
α
(

1+ ∆2

R2s

)
(4.9)

But this is just an ordinary fourier transform in iα. The first term in parentheses gives a

vanishing contribution for R→∞, but the second term gives(
M2

2

)∆1234−h−`
eπi(h−∆)δ

(
1− M2

s

)
(4.10)

where ∆ = RM . As expected, we see that the flat space limit of a 4-pt scalar conformal

block is simply a delta function that sets the center of mass energy equal to the mass

(dimension) of the conformal block.

As we show in the appendix, in the case of general spin `, a conformal block is simply

a Mack polynomial P`,∆(δij) multiplied by B`
∆(δ12). The purpose of the Mack polynomial

is to encode the angular momentum information, so it is no surprise that in the flat space

limit it simply becomes

P`,∆(δij)→
(
MR

2

)d(
−R

2s

4α

)`
P

(d)
` (cos θ) (4.11)

where P
(d)
` (cos θ) are the Legendre or Gegenbauer polynomials appropriate to d-dimensional

spherical harmonics. The dependence on α simply compensates for the α` dependence of

B`
∆, as noted above. So we find that the flat space limit of a general conformal block is[(

M2

2

)∆1234

eπi(h−∆)

]
P

(d)
` (cos θ)δ

(
1− M2

s

)
(4.12)

as anticipated, up to a convention-dependent normalization factor.

4.2 Implications of hawking evaporation for CFTs

Black Hole thermodynamics leads to certain expectations for scattering amplitudes at very

high energy and small impact parameter [15, 36, 37]. In the case of 2-to-2 scattering at
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trans-Planckian energies, the enormous entropy of macroscopic black holes combined with

the tiny entropy of a 2-particle state suggests that the scattering amplitude will be

S(s) ∼ exp

[
−1

2
SBH(s)

]
= exp

[
−1

8

(
GDs

D−2
2

) 1
D−3

]
(4.13)

for a D dimensional bulk, so that the cross section is exponentially suppressed by the black

hole entropy. We have included the factor of 1
2 in the exponent because it is the cross

section, not the amplitude, which should be suppressed by the black hole entropy; one

should also use the more general Kerr entropy at large impact parameter. Of course the

same result obtains from the thermal spectrum of Hawking radiation. In principle, the

amplitude could be larger than this.8 However, if two massless particles collide with an

impact parameter smaller than the Schwartzchild radius associated with their center of

mass energy, then causality suggests that the two particles will be inside a trapped surface

before they can interact, and so black hole formation seems unavoidable [37].

This semiclassical expectation for the high-energy 2-to-2 scattering amplitude leads

to a very general prediction for the behavior of the conformal block decomposition in

equation (4.2) at large dimensions. In particular, the conformal block coefficients should

take the form

C(∆, `) ∼ exp

[
−1

2

(
∆D−2

N2

) 1
D−3

]
for `�

(
∆D−2

N2

) 1
D−3

when ∆D−2 � N2 (4.14)

where D is the full spacetime dimension of the decompactifying bulk (if there are no

compactification manifolds whose size grow with the AdS scale R, then D = d + 1). We

are defining a rough version of the central charge via N2 ≈ 1/GD. This is a prediction for

the conformal block decomposition in any CFT with a bulk dual that can be described by

a low-energy effective field theory with classical gravity.

Unfortunately, this whole discussion has been the reverse of what we really desire —

namely a derivation of these results directly from the CFT. Obtaining such a derivation,

which must be a robust consequence in any CFT with a weakly coupled gravity dual, may

be the most important problem in quantum gravity.

5 Discussion

Locality is one of the most important ideas in physics, and understanding it [16–19, 38]

has only become more urgent since the discovery that a local spacetime can emerge holo-

graphically from a lower dimensional theory, as in the AdS/CFT correspondence [6–8].

However, in the absence of an explicit Lagrangian (and even in its presence [39]) the

definition of locality is often rather murky. Fortunately, one can make the notion precise in

flat spacetime: local theories can be defined as those that give rise to S-Matrices that are

analytic and exponentially bounded functions of the kinematic invariants. In this work we

8But it cannot be any smaller, because the probability that the two particles tunnel through each other
is of this order.
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have argued that one can understand the analyticity properties of the S-Matrix in theories

of quantum gravity by taking the flat spacetime limit of AdS/CFT correlation functions in

the Mellin representation. We have taken some steps in this direction by showing how the

familiar analyticity properties of the S-Matrix in bulk perturbation theory emerge from

the meromorphy of the Mellin amplitude, but there is much more work that could be done

analyzing the Mellin amplitudes from more interesting CFTs.

When it comes to AdS/CFT, one can discuss bulk locality on scales both larger and

smaller than the AdS scale R. On distance scales larger than R, bulk locality can be

analyzed using the holographic RG [18, 40], but from this point of view sub-AdS scale

locality remains very mysterious. In regions much smaller than R the AdS curvature

should be irrelevant, and so the holographic RG approach must break down, since we

do not expect there to be an RG picture when we ‘integrate out’ an approximately flat

dimension. Instead, it is much more natural to analyze sub-AdS scale holography using

flat space methods, and chief among these is the analyticity of the S-Matrix. The Mellin

amplitude makes this analysis possible for AdS/CFT.

Another motivation for investigating locality is to understand to what extent (if any)

black hole evaporation should be viewed as a local process governed by a local theory. It

has been anticipated that new tools are needed to attack this question; in fact, one of the

goals of research into new on-shell methods for describing scattering amplitudes [41, 42]

has been to give a less manifestly local description of the S-Matrix, in the hopes that such a

description would be easier to adapt to the scattering amplitudes of quantum gravity. We

believe that the Mellin amplitude is the appropriate tool for these questions. Gravitational

physics in AdS with D > 3 and a parametric separation between R and `Pl generically

involves black holes that are much smaller than the AdS radius. Thus we expect that the

dual CFTs and their Mellin amplitudes will provide an ideal laboratory for investigating

Hawking evaporation in a setting where bulk locality is not manifest. Scattering processes

involving black holes will violate the exponential boundedness requirements associated with

locality [14, 15, 36, 37], but it will be very interesting to investigate exactly how locality

breaks down, and to give a precise criterion for the situations and questions for which

effective field theory fails.

We took the first step towards an analysis of black holes by identifying a robust conse-

quence of Hawking evaporation for the conformal block decomposition. One expects that

2-to-2 scattering will be exponentially suppressed at energies larger than the Planck scale

due to the large black hole entropy, and this implies a corresponding exponential shutdown

in the coefficients for the conformal block expansion at large dimensions in the dual CFT.

This is a sharp and generic prediction that could be understood through the direct study

of CFTs; such a result would be the first step towards a microscopic derivation of Hawking

evaporation.

We have given a non-perturbative, holographic definition of the S-Matrix using the

flat spacetime limit of AdS/CFT, so it is natural to ask whether all consistent S-Matrices

in quantum gravity can be obtained from the large central charge limit of a CFT. In

other words, is AdS/CFT the path to quantizing gravity in flat spacetime? We simply

do not know, but it would be fascinating if there exists a generic alternative description.
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The remarkably simple properties of the scattering amplitudes themselves [41–48] and the

existence of matrix models [49] might be viewed as evidence for this sort of conjecture. In

any case, our work suggests that there is an intimate connection between the Bootstrap

Program for large N CFTs [20–27, 50] and the S-Matrix Program, and that solving general

CFTs via the Bootstrap will be at least as difficult as finding consistent S-Matrices using

the constraints of crossing symmetry, analyticity, and unitarity.

The investigation of Mellin amplitudes is only its infancy. In a companion paper [9]

we will show how the usual unitarity relations for the S-Matrix arise from the OPE of the

CFT. However, there are many other elementary questions that still need to be addressed,

including the development of diagrammatic rules for loops and for fields with spin. Here

we have only obtained the flat space S-Matrix for external states composed of massless

scalar particles, so some further technical developments [22, 23] will be necessary to treat

arbitrary species of particles. Techniques from the analysis of scattering amplitudes, such

as the BCFW recursion relations [43, 44, 47], can likely also be applied in Mellin space.

It will interesting to see if the Mellin space approach can also offer insight into theories

without the full conformal group of symmetries.
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A Basic definitions

A.1 Measure of integration

Before considering the definition and uniqueness properties of the Mellin amplitude, let

us give a precise definition of the measure of integration, as given by [1, 4, 5] . Given a

particular solution ∆ij to the constraint equations, we can define

δij = ∆ij +

n(n−3)
2∑

k=1

cij,ksk (A.1)

where the coefficients cij,k are symmetric in i, j vanish when i = j, and satisfy∑
j

cij,k = 0 (A.2)

so that δij continue to satisfy the constraint equation for arbitrary sk. Now we can view

cij,k as an square matrix of size n(n−3)
2 if we let the ij take on all of their non-zero values.
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If we demand that

|det cij,k| = 1 (A.3)

then the measure of integration will simply be

∫
[dδ] =

∫ i∞

−i∞

n(n−3)
2∏

k=1

dsk (A.4)

Note that there are poles from the Γ(δij) for all non-positive integer values of the δij ,

and also poles (generically, semi-infinite sequences of poles) at positive δij from the Mellin

amplitude. The contour of integration is chosen so that it passes entirely to one side of

these semi-infinite lines of poles. For large values of the dimensions ∆i this sort of contour

is obtained automatically by giving the δij a small real part, but otherwise integrating

along a line from −i∞ to i∞ as indicated. For example, at 4-pt we can write all of the δij
directly in terms of δ12 and δ13, and if all the external dimensions are equal then we find∫ ε+i∞

ε−i∞
dδ12dδ13M(δij)Γ(δ12)2Γ(δ13)2Γ(∆− δ12 − δ13)2

∏
i<j

(xij)
−2δij (A.5)

One can immediately see that the factors of Γ(δ12)2Γ(δ13)2 give poles at non-positive integer

values of δ12 and δ13, while the final Γ(∆−δ12−δ13)2 factor and the Mellin amplitude itself

only have poles at positive values of δ12 + δ13. The contour of integration naturally runs

between these lines of poles, as pictured in figure 3. The fact that some are double poles

signals the presence of anomalous dimensions in perturbation theory (the exact Mellin

amplitude will only have single poles).

A.2 Mellin amplitude: definition and non-uniqueness

Our goal here is to give a precise definition of the Mellin amplitude, so let’s begin with an

n-pt CFT correlator An(uijkl) that has been stripped of some overall dependence on the

xi coordinates, so that it only depends on cross ratios

u(xi, xj , xk, xl) =
rijrkl
rikrjl

(A.6)

where rab = (xa − xb)2. For now we will imagine a putative CFT in infinite d, so that we

can ignore d-dependent relations among the cross ratios.

Now let us use conformal invariance to set x1 = 1, x2 = 0, x3 = ∞ for convenience,

and we will freely refer to these as though they are labeled x1, x0, x∞. In this frame we

find that

r1i = u(0,∞, 1, xi) (A.7)

r0i =
1

u(1, 0,∞, xi)
(A.8)

rij =
u(0,∞, xi, xj)
u(1, 0,∞, xi)

(A.9)
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where in all cases i, j > 3. Since we have that r∞i = ∞ and r01 = 1, this means that we

can express all the non-trivial Poincaré invariants rij in terms of u(0,∞, i, j), u(0,∞, 1, i),
and u(1, 0,∞, i) and it is easy to count and find that there are n(n− 3)/2 of them. So the

cross ratios appearing above provide a complete basis of conformal invariants on which An
can depend.

This accords with a certain basis for the δab of the Mellin amplitude that we wish to

define. Namely, if we use the constraints
∑

j δij = ∆i to eliminate the δ∞a and δ10 then

we are left with exactly n(n − 3)/2 variables (recall that δij = δji and δii = 0). Thus we

can define the Mellin amplitude via the inverse Mellin transform in each variable,

N(δ1i, δ0i, δij) =

=

∫ ∞
0

An(uijkl)

n∏
i=3

(u0∞1i)
−∆i−δ0i−1du0∞1i(u10∞i)

δ1i−1du10∞i

n∏
3<i<j

(u0∞ij)
δij−1du0∞ij

(A.10)

We also could have just defined this directly in terms of r0i, r1i, and rij for i, j > 3. What

we call the Mellin amplitude (as opposed to the integrand N above) can now be defined as

M(δab) =
N(δ1i, δ0i, δij)∏

a<b Γ(δab)
(A.11)

so that

An(uijkl) =

∫ i∞

−i∞
[dδ]Mn(δab)

∏
a<b

Γ(δab)r
−δab
ab (A.12)

as desired.

Now let us consider the situation when n > d + 2. The Mellin amplitude will no

longer be uniquely defined, so there will be many Mellin-space functions that give rise to

vanishing position-space correlators (these Mellin amplitudes are “pure gauge”). However,

it is simple to generate these “pure gauge” Mellin amplitudes, and to see that they vanish

when we take the flat space limit.

Let us universalize the notation by taking the indices a, b to run from 1 to d+ 2, while

the indices i, j run from d+ 3 to n, and finally the indices α, β can take any value from 1

to n. It will be useful to represent the kinematics in d + 2 dimensional embedding space

coordinates PAα [51]. These variables are constrained by P 2
α = 0 and identified projectively

as PAα ∼ λPAα for positive real λ. We can choose an explicit PAα corresponding to xµα
by taking (P−α , P

+
α , P

µ
α ) = (1, x2

α, x
µ
α), so that (xα − xβ)2 = Pα · Pβ and we will use the

shorthand Pα · Pβ = Pαβ.

Now let us define the d+ 3 by d+ 3 matrix

Aαβ(I, J) =

[
Pab PaJ
PIb PIJ

]
(A.13)

where the indices I and J are fixed, whereas the a and b indices range from 1 to d+ 2 (so

Pab forms a d+ 2-by-d+ 2 sub-matrix in the upper left corner, etc).
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The point is that det[A(I, J)] = 0 for all I and J between d + 3 and n. This follows

immediately from the fact that the entries of M(I, J) are formed from the matrix product

PAα PAβ, and when we regard the object PAα as a d + 2 by n matrix it has rank at most

d+ 2. This means that generically there is an explicit formula relating

PIJ = fIJ(Pab, PaI , PaJ) (A.14)

by using this determinant condition. This reduces the full space of Pαβ to a

(d+ 2)(d− 1)

2
+ d(n− d− 2) =

d(2n− d− 3)

2
− 1 (A.15)

dimensional space (when n ≥ d + 2, otherwise the result is just n(n − 3)/2), because the

unconstrained first d + 2 points give (d + 2)(d − 1)/2 degrees of freedom and then each

extra point beyond d+ 2 gives d extra degrees of freedom.

It is tempting to try to use this reduced set of variables to define the Mellin amplitude,

or at least to show that it exists, by taking the Mellin transform in only this reduced set

of variables. However, this would break the permutation symmetry among the external

operators in an ad hoc way, and it is unclear how it would be related to our known results

for Mellin amplitudes corresponding to tree-level Witten diagrams, which do not require a

choice of preferred basis or “gauge fixing”.

However, another way of looking at the situation is that while the fact that

det[A(I, J)] = 0 is fairly clear in position space, it becomes a non-trivial statement in

Mellin space, where the spacetime dimension makes no explicit appearance. Thus if we

take a conformally covariant function, express it as an integral over Mellin space, multiply

by det[A(I, J)], and interpret the result as a single Mellin space amplitude then we ob-

tain an equality that identifies functions on Mellin space that integrate to zero. In other

words, we have a way of finding functions in Mellin space that are “pure gauge”. Applying

this procedure shows that for any Mellin integrand function N(δαβ), meaning any function

where the integral

A(Pα) =

∫
[dδ]N(δαβ)

n∏
α<β

(Pαβ)−δαβ (A.16)

gives a well-defined result, we have (in d dimensions)

0 =

∫
[dδ]

n∏
α<β

(Pαβ)−δαβ

 ∑
σ(a1,...,an)

sign(σ)N
(
δ1sσ(1)

+ 1, δ2sσ(2)
+ 1 . . . , δmsσ(m)

+ 1
)

(A.17)

where we are summing over all permutations σ on m = d + 3 or more indices, and the si
are m arbitrary distinct integer labels ranging from 1 to n. The δαβ that have not been

explicitly written are unchanged. This formula is simply implementing the determinant —

the shifts in the Mellin variables occur because we have soaked up each monomial in the

determinant by a shift of the δαβ variables. There will also be even more general objects

that do not use the labels 1, 2, . . . ,m but any set of distinct integers, but we have written

the above as a simpler representative example.
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The object in square brackets is “pure gauge” as a Mellin integrand. This object will

also vanish when we take the flat space limit to compute the S-Matrix. The reason is that

when we perform this procedure, the Mellin amplitude (as opposed to the integrand N

above) will inherit an overall factor of

det

[
δab δaJ
δIb δIJ

]
(A.18)

due to the shifts δisσ(i)
→ δisσ(i)

+ 1 applied to the Γ(δisσ(i)
) functions. But in the flat space

limit this is just

det

[
pa · pb pa · pJ
pb · pI pI · pJ

]
(A.19)

which vanishes in d+1 dimensional momentum space for the same reason that det[M(I, J)]

vanished in position space in the CFT. Thus the flat space limit of “pure gauge” Mellin

amplitudes will be zero.

B Derivation of the flat space limit formula

B.1 Single particle normalizations

In the normalization conventions from [2], the two-point function of O is

〈O(t1, x̂t)O(t2, x̂2)〉 = C∆

∑
n,`

eiωn,`(t1−t2)

N2
n`J

Y`J(x̂1)Y ∗`J(x̂2), (B.1)

So, taking the smearing of the operators, we have

〈ω, v̂|ω′, v̂′〉 =

∫ τ

−τ
dt1dt2e

i(ω1t1−ω2t2)C∆

∑
n,`

eiωn,`(t1−t2)

N2
n,`,J

Y`(x̂1)Y`(x̂2)

=
∑
n,`

(2π)2δτ (ω1−ωn,`)δτ (ω2−ωn,`)
(
C∆

2πh

Γ(∆)

)2(
Rωn,`

2

)2∆−2h

Y`(x̂1)Y ∗` (x̂2)

= 2π2Rδτ (ω1 − ω2)

(
C∆

2πh

Γ(∆)

)2(
Rω1

2

)2∆−2h

δ(v̂1, v̂2)

= R2∆−2h+1 [2ωδ(~p1 − ~p2)]

[
π2

22∆−2h

(
ω∆−1C∆2πh

Γ(∆)

)2
]
, (B.2)

where we have used δ(d)(~p− ~p′) ∼ 1
pd−1 δ(p̂, p̂

′)δ(|p| − |p′|) and 1
N2
n,`,J
∼ n2∆−2hC∆

(
2πh

Γ(∆)

)2
.

This provides the normalizations in equation (2.2).
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B.2 Completing the derivation

Our starting point is the simple formula we left off from at the end of section 2, allowing

a non-zero energy violation component q0:

exp

itω +
t2ω
4α
− nq0

∑
i t

2
iωi

4α
− R2

4α

−(nq)2 +
∑
i<j

u2
ij

2s′ij

 (B.3)

where we have defined tω =
∑

i tiωi and

uij = εij −
2n

n− 2
q · (pi + pj) +

t2ijωiωj

R2
. (B.4)

Now we need to integrate over the constrained uij and ti variables and multiply by the

single-particle normalizations to obtain our desired result, equation (2.1). We will imple-

ment the n+ 1 constraints on the uij variables

0 =
∑
j 6=i

uij +
2n

n− 2
q · (pi + pj)−

t2ijωiωj

R2
(B.5)

0 = u12 +
2n

n− 2
q · (p1 + p2)− t212ω1ω2

R2
(B.6)

via Lagrange multipliers. We have made an arbitrary choice to isolate u12, which is nec-

essary so that εij do not include the α direction of integration; this means that there will

be a factor of s12 from the change of variables from δij to {α, uij}. Thus we have the

exponential integrand

exp

iΣitiωi +
(Σitiωi)

2

4α
− nq0

∑
i t

2
iωi

4α
− R2

4α

−(nq)2 +
∑
i<j

u2
ij

2s′ij

 (B.7)

+i
∑
i

λi

∑
j 6=i

uij +
2n

n− 2
q · (pi + pj)−

t2ijωiωj

R2

+ iλ

(
u12 +

2n

n− 2
q · (p1 + p2)− t212ω1ω2

R2

)
with Lagrange multipliers λi and λ. Now we can integrate over the uij without any con-

straints. This will give an overall factor of

(
4α

R2

)n(n−1)
4

n∏
i<j

√
s′ij (B.8)

nicely canceling many terms from the prefactor in equation (2.10). In the exponent we

have (after simplifying and using the constraint that
∑

j 6=i s
′
ij = 0):

exp

[
iΣitiωi +

(Σitiωi)
2

4α
+
R2

4α
(nq)2 − nq0

∑
i t

2
iωi

4α
+

2α

R2
Sabλaλb (B.9)

+i
∑
i

λi

∑
j 6=i

2n

n− 2
q · (pi + pj)−

t2ijωiωj

R2

+ iλ

(
2n

n− 2
q · (p1 + p2)− t212ω1ω2

R2

)
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where a runs from 0 to n, with λ0 ≡ λ, and Sab is

Sab =



s′12 s
′
12 s

′
12 0 0 . . .

s′12 0 s′12 s
′
13 s

′
14 . . .

s′12 s
′
12 0 s′23 s

′
24 . . .

0 s′13 s
′
23 0 s′34 . . .

0 s′14 s
′
24 s

′
34 0 . . .

...
...

...
...

...
. . .


, (B.10)

so now we can integrate over the Lagrange multipliers. This produces a prefactor that is

parametrically of the form (
R2

2α

)n+1
2 1√

det[S]
(B.11)

and returns an exponential

exp

iΣitiωi +
(Σitiωi)

2

4α
+
R2

4α
(nq)2 − nq0

∑
i t

2
iωi

4α
+
R2

8α

∑
a,b

UaUb[S
−1]ab


U0 = v12 −

t212ω1ω2

R2
, Ui =

∑
j 6=i

vij −
t2ijωiωj

R2
, (B.12)

where for notational convenience we have defined the quantity vij = 2n
n−2q · (pi + pj), and

it will also be useful to define va =
∑

j 6=i vaj = 2nq · pa + 2n2

n−2q
2 ≈ 2nq · pa. Note that here

we have assumed that we have generic momenta with det[S] 6= 0 and d+ 3 > n. One can

check that in the case n > d+ 2 the same final result obtains.

Finally, we must integrate over the times ti, ignoring the negligible quartic piece which

is suppressed by additional powers of the AdS length R. We must also include a regulator

associated with the temporal boundaries at ti = ±τ ; to simplify the integrals we will replace

this hard boundary with Gaussian factors exp
[
−∑i

t2i
2τ2

]
(it is important to maintain non-

overlapping support between the in and out states, as emphasized in [32], but this will not

an issue at this point in the derivation, where we need only evaluate some Gaussian integrals

in the simplest way available). Now we are left with time integrals over the integrand

≡ exp

R2

4α
(nq)2 +

R2

8α
v12(v12 + 4nq ·

∑
i

pi(S
−1)0i) +

R2

2α

∑
ij

n2(q · pi)(q · pj)(S−1)ij

+iΣitiωi −
1

2

∑
ij

titjAij

 (B.13)

where Aij takes the form

Aij = −δij
1

2τ2
+
ωiωj
4α

+Qij (B.14)
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where Qij is O(q) and higher, so its inverse is

A−1
ij ≈ Y (1−QY + (QY )2)ij +O(q3)

Yij = −2τ2δij + ωiωj

(
2τ2∑
k ω

2
k

+
4α

(
∑

k ω
2
k)

2

)
+O(

1

τ
) (B.15)

Note that Yijωj =
(

4α∑
k ω

2
k

)
ωi, so 1

4ωiA
−1
ij ωj simplifies to

1

4
ωiA

−1
ij ωj = α−

(
2α∑
k ω

2
k

)2

ωi(Q−QY Q)ijωj +O(q3) (B.16)

The matrix Q has four pieces, from the exponential above:

Q = Q(1) +Q(2) +Q(3) +Q(4)

Q(1) =
ω1ω2

2α
(v12S

−1
00 + 2nq ·

∑
i

piS
−1
0i )


1 −1

−1 1

0
. . .


Q

(2)
ij =

v12

α

{
ωiωj(S

−1
0i + S−1

0j ) i 6= j

−∑k 6=i ωiωk(S
−1
0i + S−1

0k ) i = j

}

Q
(3)
ij =

1

α

∑
k

{
−2nωiωjq · pk(S−1

ik + S−1
jk ) i 6= j

2n
∑

` 6=i ωiω`q · pk(S−1
ik + S−1

`k ) i = j

}
Q

(4)
ij = −δij

nq0ωi
4α

(B.17)

Finally, we want to read off the coefficient of the momentum-conserving δ-function. Sev-

eral components of q get large, ∼ τ2q2 contributions in the exponent, from the Q2 term

in (B.16). We can see already that there will generally be exactly n−1 such qµ components

(one time and n − 2 spatial), for the simple reason that ~q always enters in Q dotted into

pi directions. Naively, this lifts n components of ~q; however, not all the pi are linearly in-

dependent. At leading order, the pi’s conserve momentum, which imposes one constraint.

Furthermore, the symmetries of AdS in the flat-space limit become the symmetries of flat

space, and boosts remove an additional independent component of the pi’s. This is espe-

cially obvious in practice, where one often chooses the particles in the “in” state to be in

their rest frame, so there is already one linear relation among just the incoming momenta.

Thus, at most n−2 ~q components can get lifted by τ2, and for generic external momentum,

exactly this many get lifted.

Focusing on terms ∼ τ2q2 in (B.16), we see that they have the form(
2α∑
k ω

2
k

)2

ωi(QY Q)ijωj = −2τ2

(
2∑
k ω

2
k

)2

QiωΠij
ωQ

j
ω +O(τ0)

Qiω ≡ −
1

2α

∑
j

Qijωj , Πij
ω ≡ δij −

ωiωj∑
k ω

2
k

. (B.18)
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Now,

Qiω = Q(1)i
ω +Q(2)i

ω +Q(3)i
ω +Q(4)i

ω ,

Q(1)i
ω = q ·

(
−2ω1ω2(

n

n− 2
(p1 + p2)S−1

00 + 2n
∑
i

piS
−1
0i )(ω1 − ω2)

)
(δi1 − δi2)

Q(2)i
ω = q ·

(
− 4n

n− 2
(p1 + p2)

)∑
j

ωiωj(ωj − ωi)(S−1
0i + S−1

0j ),

Q(3)i
ω = q ·

−2
∑
j,k

(−2n)ωiωj(ωj − ωi)pk(S−1
ik + S−1

jk )


Q(4)i
ω =

nq0ω
2
i

8
(B.19)

Without loss of generality, we can consider our amplitude to be 2 to n − 2 and we can

take particles 1 and 2 in their rest frame, so that Q(1) = 0 and (p1 + p2)µ = 2ω1δ
µ0. Since

the transition amplitude is proportional to an energy-momentum-conserving δ function in

pµtot = nqµ, we want to extract the usual scattering amplitude by integrating over dd+1ptot.

The time integrations produce a factor of

∼
√

det ′ Y ∝ τn−1

(
α∑
k ω

2
k

)1/2

. (B.20)

Here, det′ indicates that all vanishing eigenvalues are discarded. The ptot integrations

produce a factor of

∼
[∑

k ω
2
k

τ

]n−1 [
1

n2
det ′

∂

∂qµ
∂

∂qν
Qω ·Πω ·Qω

]− 1
2 [ α
R2

] d+1−(n−1)
2

(B.21)

where the first two terms in brackets come from the O(τ2q2) pieces in (B.16). The last term

in brackets comes from the fact that after n−1 qµ directions get lifted by τ2, there are still

d+1− (n−1) qµ directions that are lifted only by the −R2

2α (nq)2 term in eq. (B.13). Notice

that this exactly cancels the factors of τ from the time integrations. Putting together

eqs. (2.2), (2.10), (B.8), (B.11), (B.20), and (B.21), as well as an additional factor of s12

that should be included in the change of variables from δij to α, εij due to our choice of

gauge ε12 = 0, the total prefactor for the flat-space formula integrand is then (neglecting

constants)

N−1αh−∆Σ

s12

(
(detS)(det ′

∂

∂qµ
∂

∂qν
Qω ·Πω ·Qω)

)− 1
2

n∏
i=1

ωi

(∑
k

ω2
k

)n− 3
2

 (B.22)

Note that the term in brackets is dimensionless, and so can have dependence only on

the scattering angles. Although it is not manifest from the above expression, we have

checked for n = 4 that the dependence on angles cancels. We can easily prove that
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such a cancellation must occur in all cases, as follows. The dependence on the angles is

independent of the specific theory, and is simply a prefactor that depends only on the

momenta of the external particles. Thus, this prefactor is completely fixed by a single

example. Since the Mellin amplitude is just a constant for gφn theory, and the flat-space

S-matrix is as well, this shows that the term in brackets is independent of angles in all

cases, thus finishing the derivation of the flat-space S-matrix formula (1.2).

C Källen-Lehmann in AdS

The key to being able to compute a large class of loops is the fact that∏
i

G∆i(X,Y ) =
∑
α

NαG∆α(X,Y ) (C.1)

for bulk-to-bulk propagators. One can easily compute Nα for any number of propagators

using this simple relation between products and sums of propagators

G∆1(X,Y )G∆2(X,Y ) =
∑
n

a∆1,∆2(n)G∆1+∆2+2n(X,Y ),

a∆1,∆2(n) =
(h)n

2πhn!

(∆1 + ∆2 + 2n)1−h(∆1 + ∆2 + n− 2h+ 1)n
(∆1 + n)1−h(∆2 + n)1−h(∆1 + ∆2 + n− h)n

. (C.2)

which was equation (3.14) in the text. The bulk-to-bulk propagators have a simple expres-

sion in terms of the geodesic distance σ between X and Y :

G∆(X,Y ) = C∆z
∆/2

2F1(∆, h,∆ + 1− h, z), (C.3)

where z = e−2σ.9 This formula in the case ∆1 = ∆2 was derived in section 3.2 of [17] using

an inner product on the space of propagators

〈G2h−α, Gβ〉 =

∮
dz

2πi

(1− z)2h

z1+h
G2h−α(z)Gβ(z) = CαC2h−αδαβ (C.6)

where as usual d = 2h is the dimension of the CFT, δαβ is a kronecker delta, and z =

e−2σ(X,Y ) where σ(X,Y ) is the geodesic distance between X and Y in the bulk of AdS.

The generalization that we have used can be derived by computing the inner product

〈G∆1+∆2+2n, G∆1G∆2〉 = a∆1,∆2(n) (C.7)

which vanishes unless n is a non-negative integer.

9This normalization of the bulk-to-bulk propagator is chosen to agree with the two-point functions
in [1, 2], and differs from that in [17] by a factor of C∆. Other useful representations of the bulk-to-bulk
propagator are

G∆(X,Y ) = C∆
y∆/2

2∆ 2F1(
∆

2
,

∆

2
+

1

2
,∆ + 1− h, y) (C.4)

=
C∆
u∆ 2F1(∆,∆− h+

1

2
, 2∆− 2h+ 1,− 4

u
), (C.5)

where u = (X − Y )2 and y−
1
2 = cosh σ

R
= 1 + u

2R2 .
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D Conformal blocks in Mellin space

Up to one very simple but important detail, the conformal blocks corresponding to the ex-

change of operators of arbitrary spin between external scalars were constructed by Mack [4].

First the results. Let us define the scalar block function

B`
∆(δ) = eπi(h−∆)

(
eiπ(δ+∆−2h) − 1

) Γ
(

∆−`−δ
2

)
Γ
(

2h−∆−`−δ
2

)
Γ
(
∆a − δ

2

)
Γ
(
∆b − δ

2

) (D.1)

where as in the text we have defined the variables δ = ∆1 + ∆2 − 2δ12, 2∆a = ∆1 + ∆2

while 2∆b = ∆3 + ∆4 are defined for convenience. In the scalar case (` = 0) this function

is the conformal block. The only factor in B`
∆(δ) that Mack [4] did not include is the

pre-factor in parentheses, which cancels the ‘shadow’ poles from the second Γ function in

the numerator, so that B`
∆(δ) only has physical poles corresponding to a primary operator

and its descendants.

In the case of non-zero ` we must multiply B`
∆(δ) with τ = ∆− ` by a Mack polyno-

mial [4]

P`,τ (δij) =

[`/2]∑
k=0

ad` (k)

(
δ′12 −

`

2

)
k

(
δ′34 −

`

2

)
k

Q`−2k(δij) (D.2)

where the primed δij ’s are shifted:

δ′12 = δ12 +
−∆1 −∆2 + d−∆

2
, δ′34 = δ34 +

−∆3 −∆4 + ∆

2
, (D.3)

and the ad` (k) are the coefficients of the familiar Legendre polynomials P
(d)
` (cos θ), which

in general dimension are Gegenbauer polynomials C
(h−1)
` (cos θ), as polynomials in cos θ:

`!

(h− 1)`
C

(h−1)
` (t) =

∑
k

ad`,kt
`−2k, adk,` =

(−1)k`!(h+ `− 1)k2
`−2k

k!(`− 2k)!
. (D.4)

Mack defines (in our notation)

Qm(δij) = 2−mm!
∑

∑′ kij=m
(−1)k14+k23

′∏ (δij)kij
kij !

(D.5)

×
[
Γ

(
∆ + ∆12 −m

2
+ k13 + k14

)
Γ

(
∆−∆12 −m

2
+ k23 + k24

)]−1

×
[
Γ

(
2h−∆+∆34−m

2
+k13+k23

)
Γ

(
2h−∆−∆34−m

2
+k14+k24

)]−1

,

where ∆ij = ∆i−∆j . The notation needs some explanation. The variables k only connect

1, 2 to 3, 4, so in other words we only have k13, k14, k23, and k24, and kij = kji. So the
∏′

terms are products over the non-vanishing kij .

In the text we discussed the flat space limit of B`
∆(δ). The Mack polynomials simply

reduce to Legendre polynomials in the flat space limit, as should be expected, because their
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only purpose is to encode the angular momentum information in the conformal blocks. Let

us see why this follows at a technical level. First, the Γ functions in equation (D.5) cancel

when ∆ → ∞ to give an overall factor of (∆/2)d. Now we can perform the sum over the

kij . In the flat space limit, δ13, δ24 ∝ t and δ14, δ23 ∝ u. This means that we can combine

terms to find that

Qm(δij) → 2−m
(

∆

2

)−d m∑
k=0

(−1)k
m!

k!(m− k)!
tkum−k

=

(
∆

2

)−d
(δ12 cos θ)m (D.6)

as desired, where we used the fact that (t − u)/s = cos θ in the center of mass frame.

Plugging this result back into (D.2) we find that the Mack polynomials reduce

P`,τ (δij)→
(
MR

2

)−d(
−R

2s

4α

)` [`/2]∑
k=0

ad` (k) cos`−2k θ (D.7)

where we have taken δij → −R2sij
4α as is appropriate for the flat spacetime limit, and we

have assumed that ∆ = MR so that this is a conformal block corresponding to a non-zero

energy in the flat space limit.

The functionB`
∆(δ) can be most easily understood as a simple solution to the functional

equation we found (1.14). Recall that this equation is simply the eigen-equation of the

conformal casimir, so its solutions will be, by definition, the conformal partial waves.

The conformal blocks are simply the conformal partial waves with the correct boundary

conditions. Anyway, in this case the functional equation takes the very simple form

(δ −∆ + `)(2h−∆− `− δ)
(∆a − δ)(∆b − δ)

B`
∆(δ) = B∆(δ − 2). (D.8)

and it is obvious that the two factors in the numerator and denominator are exactly re-

produced by each of the four Γ functions in equation (D.1). Note that since this is a finite

difference equation, we are free to multiply by any periodic function with period 2. The

function in parentheses is the choice which eliminates the unphysical shadow poles and

gives the correct boundary conditions for the conformal block in position space.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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