96 research outputs found
Risk management framework for build, operate and transfer (BOT) projects in Kuwait
Successful implementation of build-operate-transfer (BOT), infrastructure projects is dependent on a full and thorough analysis of factors that include social, economic and political, amongst others. Alongside the financially focused evaluations, qualitative factors will also have a strong impact on the project and so require specific techniques for the analysis. This paper presents a new evaluation framework, based on the analytical hierarchy process technique, for use in assessing the most common and significant decision factors relating to risks in BOT projects. Consultations with an expert group identified a series of risk decision factors. The results produced twenty-eight critical Risk Factors, which have a particular impact on the risks of BOT projects. The project risk framework was constructed by classifying the factors into five categories. The framework was successfully validated using a BOT project case study. This research seeks to make a valuable contribution to the field by having developed and validated a new risk evaluation framework, focused on BOT projects in Kuwait
Self-Stabilizing Byzantine Resilient Topology Discovery and Message Delivery
Traditional Byzantine resilient algorithms use vertex disjoint paths to ensure message delivery in the presence of up to f Byzantine nodes. The question of how these paths are identified is related to the fundamental problem of topology discovery. Distributed algorithms for topology discovery cope with a never ending task, dealing with frequent changes in the network topology and unpredictable transient faults. Therefore, algorithms for topology discovery should be self-stabilizing to ensure convergence of the topology information following any such unpredictable sequence of events. We present the first such algorithm that can cope with Byzantine nodes. Starting in an arbitrary global state, and in the presence of f Byzantine nodes, each node is eventually aware of all the other non-Byzantine nodes and their connecting communication links. Using the topology information, nodes can, for example, route messages across the network and deliver messages from one end user to another. We present the first deterministic, cryptographic-assumptions-free, self-stabilizing, Byzantine-resilient algorithms for network topology discovery and end-to-end message delivery. We also consider the task of r-neighborhood discovery for the case in which and the degree of nodes are bounded by constants. The use of r-neighborhood discovery facilitates polynomial time, communication and space solutions for the above tasks. The obtained algorithms can be used to authenticate parties, in particular during the establishment of private secrets, thus forming public key schemes that are resistant to man-in-the-middle attacks of the compromised Byzantine nodes. A polynomial and efficient end-to-end algorithm that is based on the established private secrets can be employed in between periodical re-establishments of the secrets
Self-stabilizing algorithms for Connected Vertex Cover and Clique decomposition problems
In many wireless networks, there is no fixed physical backbone nor
centralized network management. The nodes of such a network have to
self-organize in order to maintain a virtual backbone used to route messages.
Moreover, any node of the network can be a priori at the origin of a malicious
attack. Thus, in one hand the backbone must be fault-tolerant and in other hand
it can be useful to monitor all network communications to identify an attack as
soon as possible. We are interested in the minimum \emph{Connected Vertex
Cover} problem, a generalization of the classical minimum Vertex Cover problem,
which allows to obtain a connected backbone. Recently, Delbot et
al.~\cite{DelbotLP13} proposed a new centralized algorithm with a constant
approximation ratio of for this problem. In this paper, we propose a
distributed and self-stabilizing version of their algorithm with the same
approximation guarantee. To the best knowledge of the authors, it is the first
distributed and fault-tolerant algorithm for this problem. The approach
followed to solve the considered problem is based on the construction of a
connected minimal clique partition. Therefore, we also design the first
distributed self-stabilizing algorithm for this problem, which is of
independent interest
Role of Position 627 of PB2 and the Multibasic Cleavage Site of the Hemagglutinin in the Virulence of H5N1 Avian Influenza Virus in Chickens and Ducks
Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens
Nitric oxide synthases and tubal ectopic pregnancies induced by Chlamydia infection: basic and clinical insights
Human ectopic pregnancy (EP) remains a common cause of pregnancy-related first trimester death. Nitric oxide (NO) is synthesized from L-arginine by three NO synthases (NOS) in different tissues, including the Fallopian tube. Studies of knockout mouse models have improved our understanding of the function of NOS isoforms in reproduction, but their roles and specific mechanisms in infection-induced tubal dysfunction have not been fully elucidated. Here, we provide an overview of the expression, regulation and possible function of NOS isoforms in the Fallopian tube, highlighting the effects of infection-induced changes in the tubal cellular microenvironment (imbalance of NO production) on tubal dysfunction and the potential involvement of NOS isoforms in tubal EP after Chlamydia trachomatis genital infection. The non-equivalent regulation of tubal NOS isoforms during the menstrual cycle suggests that endogenous ovarian steroid hormones regulate NOS in an isoform-specific manner. The current literature suggests that infection with C. trachomatis induces an inflammatory response that eventually leads to tubal epithelial destruction and functional impairment, caused by a high NO output mediated by inducible NOS (iNOS). Therefore, tissue-specific therapeutic approaches to suppress iNOS expression may help to prevent ectopic implantation in patients with prior C. trachomatis infection of the Fallopian tube
- …