11 research outputs found

    Growth performance, blood lipids, and fat digestibility of broilers fed diets supplemented with bile acid and xylanase

    Get PDF
    This study aimed to show the effect of bile acid (BA) and xylanase (Xyl) supplementation on the growth, fat digestibility, serum lipid metabolites, and ileal digesta viscosity of broilers. A total of 720 1 d old male broilers were allocated to one of nine treatments with four replicates in each under a factorial design arrangement of three levels of BA (0 %, 0.25 %, and 0.50 %) and three levels of Xyl (0 %, 0.05 %, and 0.10 %) supplementation. The duration of the experiment was 35 d (7–42 d). Growth performance, blood lipids, fat digestibility, and ileal digesta viscosity were determined. The experimental treatments did not affect feed intake (FI) and weight gain (WG). Supplementation of BA or Xyl did not significantly ameliorate the feed conversion rate (FCR) (p&lt;0.05). The addition of BA linearly increased fat digestibility. At 7–21 d of age, the addition of BA or Xyl had a significant (p&lt;0.05) increase in serum cholesterol (Chol) but no significant difference for other serum lipid parameters in broiler chickens fed with Xyl in the starter and grower periods. However, the supplementation of 0.5 % BA at 7–21 d of age significantly increased the Chol and low-density-lipoprotein (LDL) levels. The results of this trial revealed that the supplementation of xylanases had a great effect on the degradation of arabinoxylan from wheat, which led to a relatively greater reduction in ileal digesta viscosity; it was also found that supplementation of BA significantly increased the concentration of serum lipid metabolites, whereas BA and Xyl supplementation linearly increased the fat digestibility of the birds fed wheat and tallow diets.</p

    Effect of Petroleum Crude Oil on Mineral Nutrient Elements, Soil Properties and Bacterial Biomass of the Rhizosphere of Jojoba

    No full text
    Aims: This study is to evaluate the effect of petroleum crude oil contaminated soil on the mineral nutrient elements, soil properties and bacterial biomass of the rhizosphere of jojoba plants (Simmodsia chinensis). Methodology: A pot experiment was carried out. The soil was treated with different levels of crude oil: 1, 2 and 3% v/w either alone or in combination with inorganic fertilizers. Results: Malondialdehyde (MDA) concentration increased in jojoba leaves when grown in petroleum oil polluted soil especially at 2% and 3% crude oil. It was noted that, Na, Mg and Ca decreased while K increased in shoots of jojoba. In roots Na and Ca increased however K and Mg decreased with increasing crude oil concentration in the soil. Heavy metals, Cu, Mn, Cd and Pb increased in both shoot and root with increasing crude oil concentration while, Zn decreased comparing with the control. In soil, N and K decreased meanwhile Cu, Fe, Mn and Zn as well as organic matter increased with increasing crude oil concentration. Soil was free from P while, the addition of inorganic fertilizers improved P content. Bacterial account was significantly increased at the end of the experiment at 1% and 2% crude oil especially after addition of inorganic fertilizers. The electric conductivity and MDA of the leaves increased with increasing crude oil concentration. The addition of inorganic fertilizers to crude oil contaminated soil decreased the electric conductivity and MDA comparing with crude oil only. Conclusion: The observed changes in composition of mineral elements in jojoba plants in the present study could be attributed to the cell injury and disruption in the cell membrane, heavy metal accumulation and toxic nature of the petroleum oil. Also this study has demonstrated that soil contamination with crude oil has a highly significant effect of reducing some mineral element composition of Jojoba plants

    Effect of Petroleum Crude Oil on Mineral Nutrient Elements, Soil Properties and Bacterial Biomass of the Rhizosphere of Jojoba

    No full text
    Aims: This study is to evaluate the effect of petroleum crude oil contaminated soil on the mineral nutrient elements, soil properties and bacterial biomass of the rhizosphere of jojoba plants (Simmodsia chinensis). Methodology: A pot experiment was carried out. The soil was treated with different levels of crude oil: 1, 2 and 3% v/w either alone or in combination with inorganic fertilizers. Results: Malondialdehyde (MDA) concentration increased in jojoba leaves when grown in petroleum oil polluted soil especially at 2% and 3% crude oil. It was noted that, Na, Mg and Ca decreased while K increased in shoots of jojoba. In roots Na and Ca increased however K and Mg decreased with increasing crude oil concentration in the soil. Heavy metals, Cu, Mn, Cd and Pb increased in both shoot and root with increasing crude oil concentration while, Zn decreased comparing with the control. In soil, N and K decreased meanwhile Cu, Fe, Mn and Zn as well as organic matter increased with increasing crude oil concentration. Soil was free from P while, the addition of inorganic fertilizers improved P content. Bacterial account was significantly increased at the end of the experiment at 1% and 2% crude oil especially after addition of inorganic fertilizers. The electric conductivity and MDA of the leaves increased with increasing crude oil concentration. The addition of inorganic fertilizers to crude oil contaminated soil decreased the electric conductivity and MDA comparing with crude oil only. Conclusion: The observed changes in composition of mineral elements in jojoba plants in the present study could be attributed to the cell injury and disruption in the cell membrane, heavy metal accumulation and toxic nature of the petroleum oil. Also this study has demonstrated that soil contamination with crude oil has a highly significant effect of reducing some mineral element composition of Jojoba plants

    Exploring the impacts of different fasting and refeeding regimes on Nile tilapia (Oreochromis niloticus L.): growth performance, histopathological study, and expression levels of some muscle growth-related genes

    Get PDF
    The current study investigated how different fasting and refeeding regimes would impact Nile tilapia growth performance, histopathological examination, and gene expression of myostatin, myogenin, GH, IGF-1, and NPYa. Nile tilapia fish (n = 120) were randomly allocated into four groups, including the control group fed on a basal diet for 6 weeks (F6), group A starved for 1 week and then refed for 5 weeks (S1F5), group B starved for 2 weeks and then refed for 4 weeks (S2F4), while group C starved for 4 weeks and then refed for 2 weeks (S4F2). Fasting provoked a decrease in body weight coincided with more extended starvation periods. Also, it induced muscle and liver histological alterations; the severity was correlated with the length of fasting periods. Gene expression levels of GH, MSTN, MYOG, and NPYa were significantly increased, while IGF1 was markedly depressed in fasted fish compared to the control group. Interestingly, refeeding after well-planned short fasting period (S1F5) modulated the histopathological alterations. To some extent, these changes were restored after refeeding. Restored IGF-I and opposing fasting expression profiles of the genes mentioned above thus recovered weights almost like the control group and achieved satisfactory growth compensation. Conversely, refeeding following more extended fasting periods failed to restore body weight. In conclusion, refeeding after fasting can induce a compensatory response. Still, the restoration capacity is dependent on the length of fasting and refeeding periods through exhibiting differential morphological structure and expressions pattern for muscle and growth-related genes.Output Status: Forthcoming/Available Onlin

    Development of a clinical risk score to predict death in patients with COVID-19

    No full text
    Objective: To build a clinical risk score to aid risk stratification among hospitalised COVID-19 patients. Methods: The score was built using data of 417 consecutive COVID-19 in patients from Kuwait. Risk factors for COVID-19 mortality were identified by multivariate logistic regressions and assigned weighted points proportional to their beta coefficient values. A final score was obtained for each patient and tested against death to calculate an Receiver-operating characteristic curve. Youden's index was used to determine the cut-off value for death prediction risk. The score was internally validated using another COVID-19 Kuwaiti-patient cohort of 923 patients. External validation was carried out using 178 patients from the Italian CoViDiab cohort. Results: Deceased COVID-19 patients more likely showed glucose levels of 7.0–11.1&nbsp;mmol/L (34.4%, p&nbsp;&lt;&nbsp;0.0001) or &gt;11.1&nbsp;mmol/L (44.3%, p&nbsp;&lt;&nbsp;0.0001), and comorbidities such as diabetes and hypertension compared to those who survived (39.3% vs. 20.4% [p&nbsp;=&nbsp;0.0027] and 45.9% vs. 26.6% [p&nbsp;=&nbsp;0.0036], respectively). The risk factors for in-hospital mortality in the final model were gender, nationality, asthma, and glucose categories (&lt;5.0, 5.5–6.9, 7.0–11.1, or 11.1&nbsp;&gt;&nbsp;mmol/L). A score of ≥5.5 points predicted death with 75% sensitivity and 86.3% specificity (area under the curve (AUC) 0.901). Internal validation resulted in an AUC of 0.826, and external validation showed an AUC of 0.687. Conclusion: This clinical risk score was built with easy-to-collect data and had good probability of predicting in-hospital death among COVID-19 patients
    corecore