5 research outputs found
Smart Injectable Chitosan Hydrogels Loaded with 5-Fluorouracil for the Treatment of Breast Cancer
The treatment of breast cancer requires long chemotherapy management, which is accompanied by severe side effects. Localized delivery of anticancer drugs helps to increase the drug concentration at the site of action and overcome such a problem. In the present study, chitosan hydrogel was prepared for local delivery of 5-Fluorouracil. The in vitro release behavior was investigated and the anticancer activity was evaluated against MCF-7 cells using MTT assay. The in vivo studies were investigated via intra-tumoral injection of a 5-FU loaded hydrogel into breast cancer of female rats. The results indicated that the modified hydrogel has excellent physicochemical properties with a sustained in vitro release profile matching a zero-order kinetic for one month. In addition, the hydrogel showed superior inhibition of cell viability compared with the untreated control group. Moreover, the in vivo studies resulted in antitumor activity with minor side effects. The tumor volume and level of tumor markers in blood were inhibited significantly by applying the hydrogel compared with the untreated control group. In conclusion, the designed injectable hydrogels are potential drug delivery systems for the treatment of breast cancer with a controlled drug release profile, which could be suitable for decreasing the side effects of chemotherapy agents
Thymoquinone Lowers Blood Glucose and Reduces Oxidative Stress in a Rat Model of Diabetes
The aim of the present study was to assess the short-term effects of Thymoquinone (TQ) on oxidative stress, glycaemic control, and renal functions in diabetic rats. DM was induced in groups II and III with a single dose of streptozotocin (STZ), while group I received no medication (control). The rats in groups I and II were then given distilled water, while the rats in group III were given TQ at a dose of 50 mg/kg body weight/day for 4 weeks. Lipid peroxidase, nitric oxide (NO), total antioxidant capacity (TAC), glycated haemoglobin (HbA1c), lipid profiles, and renal function were assessed. Moreover, the renal tissues were used for histopathological examination. STZ increased the levels of HbA1c, lipid peroxidase, NO, and creatinine in STZ-induced diabetic rats in comparison to control rats. TAC was lower in STZ-induced diabetic rats than in the control group. Furthermore, rats treated with TQ exhibited significantly lower levels of HbA1c, lipid peroxidase, and NO than did untreated diabetic rats. TAC was higher in diabetic rats treated with TQ than in untreated diabetic rats. The histopathological results showed that treatment with TQ greatly attenuated the effect of STZ-induced diabetic nephropathy. TQ effectively adjusts glycaemic control and reduces oxidative stress in STZ-induced diabetic rats without significant damaging effects on the renal function
Topical silver nanoparticles reduced with ethylcellulose enhance skin wound healing
OBJECTIVE: Silver nanoparticles (G-AgNPs) improve wound healing by promoting skin cell proliferation and differentiation. Therefore, G-AgNPs could act as drug carriers and wound healers in biomedicine. The current study aimed to improve skin wound healing using natural, safe G-AgNPs.
MATERIALS AND METHODS: The G-AgNPs were reduced with ethylcellulose (EC) and incorporated into an oil-in-water cream base. The size, charges, and wavelength were used to characterize the prepared G-AgNPs. Further, the transmission electron microscope (TEM) and the scanning electron microscope (SEM) were used to provide the shape of G-AgNPs. Moreover, the skin wound healing was evaluated with the appropriate histopathological techniques in a mouse model with skin injury to prove the curative effects of G-AgNPs which was conducted for 15 days on 45 adult male albino rats. The effectiveness of G-AgNPs-EC cream for treating surgical skin wounds was assessed by histopathological (HP) examination of hematoxylin and eosin (H&E) stained sections.
RESULTS: The produced G-AgNPs-EC showed a size of 183.9 ± 0.854 nm and a charge of -14.0 ± 0.351 mV. UV-VIS spectra showed a strong absorption of electromagnetic waves in the visible region at 381 nm. Furthermore, the TEM and SEM showed rounded NPs in nano size of the prepared G-AgNPs-EC. The G-AgNPs cream was pivotal in enhancing wounds’ healing properties, improving the formation of wound granulation tissue, and enhancing the proliferation of epithelial tissue in rats.
CONCLUSIONS: The current study showed that G-AgNPs-EC is a new skin wound healer that speeds up healing
PEG-4000 formed polymeric nanoparticles loaded with cetuximab downregulate p21 & stathmin-1 gene expression in cancer cell lines.
Cetuximab (CTX) is known to have cytotoxic effects on several human cancer cells in vitro; however, as CTX is poorly water soluble, there is a need for improved formulations can reach cancer cells at high concentrations with low side effects. We developed (PEG-4000) polymeric nanoparticles (PEGNPs) loaded with CTX and evaluated their in vitro cytotoxicity and anticancer properties against human lung (A549) and breast (MCF-7) cancer cells. CTX-PEGNPs were formulated using the solvent evaporation technique, and their morphological properties were evaluated. Further, the effects of CTX-PEGNPs on cell viability using the MTT assay and perform gene expression analysis, DNA fragmentation measurements, and the comet assay. CTX-PEGNP showed uniformly dispersed NPs of nano-size range (253.7 ± 0.3 nm), and low polydispersity index (0.16) indicating the stability and uniformity of NPs. Further, the zeta potential of the preparations was -17.0 ± 1.8 mv. DSC and FTIR confirmed the entrapping of CTX in NPs. The results showed IC50 values of 2.26 μg/mL and 1.83 μg/mL for free CTX and CTX-PEGNPs on the A549 cancer cell line, respectively. Moreover, CTX-PEGNPs had a lower IC50 of 1.12 μg/mL in MCF-7 cells than that of free CTX (2.28 μg/mL). The expression levels of p21 and stathmin-1 were significantly decreased in both cell lines treated with CTX-PEGNPs compared to CTX alone. The CTX-PEGNP-treated cells also showed increased DNA fragmentation rates in both cancer cell lines compared with CTX alone. The results indicated that CTX-PEGNP was an improved formulation than CTX alone to induce apoptosis and DNA damage and inhibit cell proliferation through the downregulation of P21 and stathmin-1 expression
Short-term treatment of metformin and glipizide on oxidative stress, lipid profile and renal function in a rat model with diabetes mellitus
Background: Oxidative stress, lipid profile and renal functions are well-known conventional risk factors for diabetes mellitus (DM). Metformin and gliclazide are popularly used monotherapy drugs for the treatment of DM. Aims: This study aims to assess the short-term treatment of single and dual therapy of glipizide/metformin on oxidative stress, glycemic control, serum lipid profiles and renal function in diabetic rats. Methods: DM was induced in rats with streptozotocin (STZ), then five different treatments were applied, including group I (untreated healthy control), group II (diabetic and untreated), group III (diabetic and treated with metformin), group IVI (diabetic and treated with glipizide) and group V (diabetic and treated with a combination of metformin and glipizide. Lipid peroxidation (LPO), nitric oxide (NO), total antioxidant capacity (TAC), fasting blood glucose (FBG), glycated hemoglobin (HbA1c), total cholesterol, triglycerides, high-density lipoprotein (HDL), low-density lipoprotein (LDL), creatinine and urea were measured. Results: Compared to the untreated DM group, FBG and HbA1c were significantly reduced in the DM groups (p < 0.01) treated with metformin (159.7 mg/dL & 6.7%), glipizide (184.3 mg/dL & 7.3%) and dual therapy (118 mg/dL & 5.2%), respectively. Treatment with dual therapy and metformin significantly decreased LPO and NO levels but increased TAC in diabetic rats more than glipizide compared to untreated diabetic rats. Furthermore, metformin (19.8 mg/dL, p < 0.001), glipizide (22.7 mg/dL, p < 0.001), and dual therapy (25.7 mg/dL, p < 0.001) significantly decreased urea levels in the treated rats compared to untreated DM rats (32.2 mg/dL). Both drugs and their combination exhibited a substantial effect on total cholesterol, HDL, LDL and atherogenic index. Conclusions: These results suggest that the therapeutic benefits of metformin and glipizide are complementary. Metformin exhibited superior performance in improving glycemic control and decreasing oxidative stress, while glipizide was more effective against dyslipidemia. These findings could be helpful for the treatment of future vascular patients, antilipidemic medicines and antioxidant therapy to improve the quality of lif