Topical silver nanoparticles reduced with ethylcellulose enhance skin wound healing

Abstract

OBJECTIVE: Silver nanoparticles (G-AgNPs) improve wound healing by promoting skin cell proliferation and differentiation. Therefore, G-AgNPs could act as drug carriers and wound healers in biomedicine. The current study aimed to improve skin wound healing using natural, safe G-AgNPs. MATERIALS AND METHODS: The G-AgNPs were reduced with ethylcellulose (EC) and incorporated into an oil-in-water cream base. The size, charges, and wavelength were used to characterize the prepared G-AgNPs. Further, the transmission electron microscope (TEM) and the scanning electron microscope (SEM) were used to provide the shape of G-AgNPs. Moreover, the skin wound healing was evaluated with the appropriate histopathological techniques in a mouse model with skin injury to prove the curative effects of G-AgNPs which was conducted for 15 days on 45 adult male albino rats. The effectiveness of G-AgNPs-EC cream for treating surgical skin wounds was assessed by histopathological (HP) examination of hematoxylin and eosin (H&E) stained sections. RESULTS: The produced G-AgNPs-EC showed a size of 183.9 ± 0.854 nm and a charge of -14.0 ± 0.351 mV. UV-VIS spectra showed a strong absorption of electromagnetic waves in the visible region at 381 nm. Furthermore, the TEM and SEM showed rounded NPs in nano size of the prepared G-AgNPs-EC. The G-AgNPs cream was pivotal in enhancing wounds’ healing properties, improving the formation of wound granulation tissue, and enhancing the proliferation of epithelial tissue in rats. CONCLUSIONS: The current study showed that G-AgNPs-EC is a new skin wound healer that speeds up healing

    Similar works