16 research outputs found

    Evaluation of Oxidative Stress and Antioxidant Status in Diabetic and Hypertensive Women during Labor

    Get PDF
    Pregnancy in insulin-dependent diabetes mellitus is associated with a greater incidence of fetal abnormality. Animal studies suggested that increased free-radical production and antioxidant depletion may contribute to this risk. The objective of this work was to evaluate oxidative stress and antioxidant capacity in hypertensive, diabetics, and healthy control women during labor. Simultaneous determination of antioxidant enzymes activities, namely glutathione peroxidase (GSH-Px), glutathione reductase (GSH-red), superoxide dismutase (SOD), total antioxidant, and lipid peroxides measured as thiobarbituric acid-reactive substances (TBARS) levels, were carried out in maternal plasma during labor. Plasma GSH-Px activity was found to be significantly increased as it doubled in hypertensive, and diabetic women when compared with healthy control women (P<0.05). In contrast, plasma SOD activity was significantly decreased in both groups when compared to the control group (P<0.05). No significant differences were detected in GSH-Red activity between diabetic, hypertensive and control groups. Alterations in antioxidant enzyme activities were accompanied by a significant increase in the levels of plasma lipid peroxides in hypertensive and diabetic women during labor. Plasma levels of total antioxidants were significantly increased in diabetic women as compared with the control group. Based on our results, it may be concluded that enhanced generation of oxidative stress causes alteration of antioxidant capacity in diabetic and hypertensive women during labor. Alterations in antioxidant and prooxidant components may result in various complications including peroxidation of vital body molecules which may be regarded as an increased risk factor for pregnant women as well as the fetus

    Pharmaceutical Care Service at Primary Health Care Centers: An Insight on Patient Satisfaction

    Get PDF
    Background: Patient's health care experiences and satisfaction are frequently used as a healthcare quality indicator. Aim: The study aims to evaluate the level of patient satisfaction with the pharmacy services provided at the Primary Health Care Corporation's (PHCC) pharmacies in Qatar. Methods: This study is a cross-sectional survey conducted in December of 2019. The study's setting is the Primary Health Care centers' pharmacies. All adult patients (≥18 years old) with mobile phone numbers documented on file who had their prescription orders filled at the PHCC's pharmacy units in 2019 were included in the study. Descriptive and inferential statistical methods were used to present the findings. The significance level was set at the alpha level of 0.05. Results: The usable responses were 9,564 from the total participants. Around 55.2% (N = 5,283) were males, 56.5% (N = 5,405) were in the age group (25-40), 19.2% (N = 1,837) were Qatari nationals, 39.7% (N = 3,801) had their medication dispensed in the Central Region of the State of Qatar, and 72.8% (N = 6,964) had at least undergraduate or higher degrees. The overall mean (SD) satisfaction score was (3.24 ± 0.629). Participants were less satisfied with their pharmacist's communication, especially offering information about medication's side effects (2.61 ± 1.2) and general health counselling (2.39 ± 1.2). Respondents were also less satisfied with waiting time (3.02 ± 1.3). Waiting time, gender, age, nationality, geographical region of the pharmacy, educational level, and familiarity with the PHCC were significantly associated with satisfaction level. Conclusion: The patients were reasonably satisfied, and the satisfaction level differed among different sociodemographic groups. Based on the public's needs and expectations, pharmacists need to continuously improve their effort to enhance the healthcare quality in the organization

    Airway Management in COVID-19 as Aerosol Generating Procedure

    Get PDF
    2020 has seen the whole world battling a pandemic. Coronavirus Disease 2019 (COVID-19) is primarily transmitted through respiratory droplets when in close contact with an infected person, by direct contact, or by contact with contaminated objects and surfaces. Aerosol generating procedures (AGPs) like intubation have a high chance of generating large concentrations of infectious aerosols. AGPs potentially put healthcare workers at an increased risk of contracting the infection, and therefore special precautions are necessary during intubation. The procedure has to be performed by an expert operator who uses appropriate personal protective equipment (PPE). Modifications of known techniques have helped to reduce the chances of contracting the infection from patients. The use of checklists has become standard safe practice. This chapter looks at the current knowledge we have regarding this illness and how we should modify our practice to make managing the airway both safer for the patient and the healthcare workers involved. It addresses the preparation, staff protection, technical aspects and aftercare of patients who need airway intervention. It recommends simulation training to familiarize staff with modifications to routine airway management

    Cardiac function and blood flow hemodynamics assessment of zebrafish (Danio rerio) using high-speed video microscopy

    No full text
    BackgroundIn the last few decades, zebrafish (Danio rerio) were introduced as a model organism to investigate human diseases including cardiovascular and neuronal disorders. In most zebrafish investigations, cardiac function and blood flow hemodynamics need to be assessed to study the effects of the interference on the cardiovascular system. For heart function assessment, most important parameters include heart rate, cardiac output, ejection fraction, fractional area change, and fractional shortening. MethodsA 10 s high-speed video of beating heart and flowing blood within major vessels of zebrafish that are less than 5 days post fertilization (dpf) were recorded via a stereo microscope equipped with a high speed camera. The videos were analyzed using MicroZebraLab and image J software for the assessment of cardiac function. ResultsUsing the technique described here, we were able to simply yet effectively assess cardiac function and blood flow dynamics of normal zebrafish embryos. We believe that the practical method presented here will help cardiac researchers using the zebrafish as a model to examine cardiac function by using tools that could be available in their laboratory.This work is supported by Qatar National Research Fund (QNRF),National Priority Research Program under grant number NPRP 10-0123-170222

    Malicious URL classification using artificial fish swarm optimization and deep learning

    No full text
    Cybersecurity-related solutions have become familiar since it ensures security and privacy against cyberattacks in this digital era. Malicious Uniform Resource Locators (URLs) can be embedded in email or Twitter and used to lure vulnerable internet users to implement malicious data in their systems. This may result in compromised security of the systems, scams, and other such cyberattacks. These attacks hijack huge quantities of the available data, incurring heavy financial loss. At the same time, Machine Learning (ML) and Deep Learning (DL) models paved the way for designing models that can detect malicious URLs accurately and classify them. With this motivation, the current article develops an Artificial Fish Swarm Algorithm (AFSA) with Deep Learning Enabled Malicious URL Detection and Classification (AFSADL-MURLC) model. The presented AFSADL-MURLC model intends to differentiate the malicious URLs from genuine URLs. To attain this, AFSADL-MURLC model initially carries out data preprocessing and makes use of glove-based word embedding technique. In addition, the created vector model is then passed onto Gated Recurrent Unit (GRU) classification to recognize the malicious URLs. Finally, AFSA is applied to the proposed model to enhance the efficiency of GRU model. The proposed AFSADL-MURLC technique was experimentally validated using benchmark dataset sourced from Kaggle repository. The simulation results confirmed the supremacy of the proposed AFSADL-MURLC model over recent approaches under distinct measure

    Molecular epidemiology, phylogenetic analysis and genotype distribution of hepatitis B virus in Saudi Arabia: Predominance of genotype D1

    No full text
    Despite the implementation of various vaccination programs, hepatitis B virus (HBV) poses a considerable health problem in Saudi Arabia. Insight on HBV evolutionary history in the region is limited. We performed a comprehensive epidemiological and phylogenetic reconstruction based on a large cohort of HBV infected patients. Three hundred and nineteen HBV-infected patients with different clinical manifestations, including inactive and active chronic carriers and patients with cirrhosis and hepatocellular carcinoma (HCC), were enrolled in this study. The full-length large S gene was amplified and sequenced. Phylogenetic analysis was performed to determine the genotype and subgenotypes of the isolates. Phylogenetic tree analysis revealed that genotype D is the most dominant genotype among patients. Moreover, this analysis identified two strains with genotype E isolated from active carriers. Detailed phylogenetic analyses confirmed the presence of four HBV D subgenotypes, D1 (93%, n = 296), D2 (0.02%, n = 5), D3 (0.003%, n = 1), and D4 (0.003%, n = 1). In addition, six genotype D strains were not assigned to any existing HBV D subgenotype. The large S gene of eight strains showed signatures of genotype recombination between the genotypes D and A and between D and E. Several strains harbored medically important point mutations at the protein level. Along with the dominance of the HBV genotype D, isolation of the E genotype and several recombinant strains from patients with Saudi Arabian origin is an essential result for decisions involving therapeutic measures for patients. Development of vaccines and detection of diagnostic escape mutations at antigenic epitopes on the HBsAg will be valuable to public health authorities. Furthermore, the diversity at the nucleotide and amino acid levels and different proportions of dN/dS at the PreS1, PreS2, and HBsAg reveal the selective pressure trend from inactive status towards advanced liver diseases.status: Published onlin

    Galangin Attenuates Liver Injury, Oxidative Stress and Inflammation, and Upregulates Nrf2/HO-1 Signaling in Streptozotocin-Induced Diabetic Rats

    No full text
    Chronic hyperglycemia increases the risk of liver damage. Oxidative stress and aberrant inflammatory response are entangled in diabetes-associated liver injury. This study evaluated the protective effect of the flavonoid galangin (Gal) on glucose intolerance, liver injury, oxidative stress, inflammatory response, and Nrf2/HO-1 signaling in diabetic rats. Diabetes was induced by streptozotocin (STZ), and the rats received Gal for six weeks. STZ-induced rats showed glucose intolerance, hypoinsulinemia, elevated glycated hemoglobin (HbA1c), and decreased liver glycogen. Gal ameliorated glucose intolerance, reduced HbA1c%, increased serum insulin and liver glycogen and hexokinase activity, and suppressed glycogen phosphorylase, glucose-6-phosphatase and fructose-1,6-biphosphatase in diabetic rats. Circulating transaminases, ALP and LDH, and liver ROS, MDA, TNF-α, IL-1β, and IL-6 were increased and GSH, SOD, and CAT were diminished in diabetic rats. In addition, diabetic rats exhibited multiple histopathological alterations and marked collagen deposition. Treatment with Gal mitigated liver injury, prevented histopathological alterations, decreased ROS, MDA, pro-inflammatory cytokines, Bax and caspase-3, and enhanced cellular antioxidants and Bcl-2. Gal downregulated hepatic Keap1 in diabetic rats and upregulated Nrf2 and HO-1 mRNA as well as HO-1 activity. Molecular modeling studies revealed the ability of Gal to bind to and inhibit NF-κB and Keap1, and also showed its binding pattern with HO-1. In conclusion, Gal ameliorates hyperglycemia, glucose intolerance, oxidative stress, inflammation, and apoptosis in diabetic rats. Gal improved carbohydrate metabolizing enzymes and upregulated Nrf2/HO-1 signaling
    corecore