44 research outputs found
Topologically Consistent Models for Efficient Big Geo-Spatio-Temporal Data Distribution
Geo-spatio-temporal topology models are likely to become a key concept to check the consistency of 3D (spatial space) and 4D (spatial + temporal space) models for emerging GIS applications such as subsurface reservoir modelling or the simulation of energy and water supply of mega or smart cities. Furthermore, the data management for complex models consisting of big geo-spatial data is a challenge for GIS and geo-database research. General challenges, concepts, and techniques of big geo-spatial data management are presented. In this paper we introduce a sound mathematical approach for a topologically consistent geo-spatio-temporal model based on the concept of the incidence graph. We redesign DB4GeO, our service-based geo-spatio-temporal database architecture, on the way to the parallel management of massive geo-spatial data. Approaches for a new geo-spatio-temporal and object model of DB4GeO meeting the requirements of big geo-spatial data are discussed in detail. Finally, a conclusion and outlook on our future research are given on the way to support the processing of geo-analytics and -simulations in a parallel and distributed system environment
Towards intelligent geo-database support for earth system observation: Improving the preparation and analysis of big spatio-temporal raster data
The European COPERNICUS program provides an unprecedented breakthrough in the broad use and application of satellite remote sensing data. Maintained on a sustainable basis, the COPERNICUS system is operated on a free-and-open data policy. Its guaranteed availability in the long term attracts a broader community to remote sensing applications. In general, the increasing amount of satellite remote sensing data opens the door to the diverse and advanced analysis of this data for earth system science.
However, the preparation of the data for dedicated processing is still inefficient as it requires time-consuming operator interaction based on advanced technical skills. Thus, the involved scientists have to spend significant parts of the available project budget rather on data preparation than on science. In addition, the analysis of the rich content of the remote sensing data requires new concepts for better extraction of promising structures and signals as an effective basis for further analysis.
In this paper we propose approaches to improve the preparation of satellite remote sensing data by a geo-database. Thus the time needed and the errors possibly introduced by human interaction are minimized. In addition, it is recommended to improve data quality and the analysis of the data by incorporating Artificial Intelligence methods. A use case for data preparation and analysis is presented for earth surface deformation analysis in the Upper Rhine Valley, Germany, based on Persistent Scatterer Interferometric Synthetic Aperture Radar data. Finally, we give an outlook on our future research
Implementation of kriging methods in mobile GIS to estimate damage to buildings in crisis scenarios
In the paper an example for the application of kriging methods to estimate damage to buildings in crisis scenarios is introduced. Furthermore, the Java implementations for Ordinary and Universal Kriging on mobile GIS are presented. As variogram models an exponential, a Gaussian and a spherical variogram are tested in detail. Different test constellations are introduced with various information densities. As test data set, public data from the analysis of the 2010 Haiti earthquake by satellite images are pre-processed and visualized in a Geographic Information System. As buildings, topography and other external influences cannot be seen as being constant for the whole area under investigation, semi variograms are calculated by consulting neighboured classified buildings using the so called moving window method. The evaluation of the methods shows that the underlying variogram model is the determining factor for the quality of the interpolation rather than the choice of the kriging method or increasing the information density of a random sample. The implementation is completely realized with the programming language Java. Thereafter, the implemented software component is integrated into GeoTech Mobile, a mobile GIS Android application based on the processing of standardized spatial data representations defined by the Open Geospatial Consortium (OGC). As a result the implemented methods can be used on mobile devices, i.e. they may be transferred to other application fields. That is why we finally point out further research with new applications in the Dubai region
TOWARDS AN INTELLIGENT PLATFORM FOR BIG 3D GEOSPATIAL DATA MANAGEMENT
The use of intelligent technologies within 3D geospatial data analysis and management will decidedly open the door towards efficiency, cost transparency, and on-time schedules in planning processes. Furthermore, the mission of smart cities as a future option of urban development can lead to an environment that provides high-quality life along stable structures. However, neither geospatial information systems nor building information modelling systems seem to be well prepared for this new development. After a review of current approaches and a discussion of their limitations we present our approach on the way to an intelligent platform for the management and analysis of big 3D geospatial data focusing on infrastructure projects such as metro or railway tracks planning. three challenges are presented focusing on the management of big geospatial data with existing geo-database management systems, the integration of heterogeneous data, and the 3D visualization for database query formulation and query results. The approach for the development of a platform for big geospatial data analysis is discussed. Finally, we give an outlook on our future research supporting intelligent 3D city applications in the United Arab Emirates
Review of mechanical vapour compression refrigeration system part 2: performance challenge
Reducing energy consumption and providing high performance for a vapour compression refrigeration system are big challenges that need more attention and investigation. This paper provides an extensive review of experimental and theoretical studies to present the vapour compression refrigeration system and its modifications that can be used to improve system's performance and reduce its energy consumption. This paper also presents the challenges that can be considered as a gab of research for the future works and investigations. Cooling capacity, refrigerant effect, energy consumption can be improved by using vapour injection technique, natural working fluid, and heat exchanger. Based on the outcome of this paper, vapour injection technique using natural refrigerant such as water can provide ultimate friendly refrigeration system. Future vision for the vapour compression refrigeration system and its new design technique using Computational Fluid Dynamic (CFD) is also considered and presented
IMPROVING DATA QUALITY AND MANAGEMENT FOR REMOTE SENSING ANALYSIS: USE-CASES AND EMERGING RESEARCH QUESTIONS
During the last decades satellite remote sensing has become an emerging technology producing big data for various application fields every day. However, data quality checking as well as the long-time management of data and models are still issues to be improved. They are indispensable to guarantee smooth data integration and the reproducibility of data analysis such as carried out by machine learning models. In this paper we clarify the emerging need of improving data quality and the management of data and models in a geospatial database management system before and during data analysis. In different use cases various processes of data preparation and quality checking, integration of data across different scales and references systems, efficient data and model management, and advanced data analysis are presented in detail. Motivated by these use cases we then discuss emerging research questions concerning data preparation and data quality checking, data management, model management and data integration. Finally conclusions drawn from the paper are presented and an outlook on future research work is given
Impact analysis of accidents on the traffic flow based on massive floating car data
The wide usage of GPS-equipped devices enables the mass recording of vehicle movement trajectories describing the movement behavior of the traffic participants. An important aspect of the road traffic is the impact of anomalies, like accidents, on traffic flow. Accidents are especially important as they contribute to the the aspects of safety and also influence travel time estimations. In this paper, the impact of accidents is determined based on a massive GPS trajectory and accident dataset. Due to the missing precise date of the accidents in the data set used, first, the date of the accident is estimated based on the speed profile at the accident time. Further, the temporal impact of the accident is estimated using the speed profile of the whole day. The approach is applied in an experiment on a one month subset of the datasets. The results show that more than 72% of the accident dates are identified and the impact on the temporal dimension is approximated. Moreover, it can be seen that accidents during the rush hours and on high frequency road types (e.g. motorways, trunks or primaries) have an increasing effect on the impact duration on the traffic flow
SPARC 2017 retrospect & prospects : Salford postgraduate annual research conference book of abstracts
Welcome to the Book of Abstracts for the 2017 SPARC conference. This year we not only celebrate the work of our PGRs but also the 50th anniversary of Salford as a University, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 130 presenters, the conference truly showcases a vibrant PGR community at Salford. These abstracts provide a taster of the research strengths of their works, and provide delegates with a reference point for networking and initiating critical debate. With such wide-ranging topics being showcased, we encourage you to exploit this great opportunity to engage with researchers working in different subject areas to your own. To meet global challenges, high impact research inevitably requires interdisciplinary collaboration. This is recognised by all major research funders. Therefore engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers