13 research outputs found

    Electrochemical sensing of biomarker for diagnostics of bacteria-specific infections

    Get PDF
    Aim: Pseudomonas aeruginosa is a pathogen that is prevalent in serious infections in compromised patients worldwide. A unique virulence factor of this bacterium is the redox-active molecule pyocyanin, which is a potential biomarker for the identification of P. aeruginosa infections. Here we report a direct, selective and rapid detection technique of pyocyanin. Materials &amp; methods: Pyocyanin was detected by amperometry at a relatively high potential where the pyocyanin signal was unaffected by background contributions. Results &amp; conclusion: Pyocyanin was detected at concentrations down to 125 nM in a 50 µM mixture of interfering compounds with a reproducibility of r2 = 0.999 (n = 5) within 200 s. The results document a step toward a point-of-care technique for diagnosis of P. aeruginosa infections. </jats:p

    Evolvable Smartphone-Based Platforms for Point-Of-Care In-Vitro Diagnostics Applications

    Get PDF
    The association of smart mobile devices and lab-on-chip technologies offers unprecedented opportunities for the emergence of direct-to-consumer in vitro medical diagnostics applications. Despite their clear transformative potential, obstacles remain to the large-scale disruption and long-lasting success of these systems in the consumer market. For instance, the increasing level of complexity of instrumented lab-on-chip devices, coupled to the sporadic nature of point-of-care testing, threatens the viability of a business model mainly relying on disposable/consumable lab-on-chips. We argued recently that system evolvability, defined as the design characteristic that facilitates more manageable transitions between system generations via the modification of an inherited design, can help remedy these limitations. In this paper, we discuss how platform-based design can constitute a formal entry point to the design and implementation of evolvable smart device/lab-on-chip systems. We present both a hardware/software design framework and the implementation details of a platform prototype enabling at this stage the interfacing of several lab-on-chip variants relying on current- or impedance-based biosensors. Our findings suggest that several change-enabling mechanisms implemented in the higher abstraction software layers of the system can promote evolvability, together with the design of change-absorbing hardware/software interfaces. Our platform architecture is based on a mobile software application programming interface coupled to a modular hardware accessory. It allows the specification of lab-on-chip operation and post-analytic functions at the mobile software layer. We demonstrate its potential by operating a simple lab-on-chip to carry out the detection of dopamine using various electroanalytical methods
    corecore