96 research outputs found

    The rise of the 'Alawi dynasty in Morocco 1631-1672.

    Get PDF
    The political crisis sparked off by the death of al-Mansur had so compromised Sadian authority that the dynasty saw its sovereignty increasingly encroached upon by rival, local leaders who carved out for themselves independent principalities in different parts of Morocco. The Sus was controlled by the Awlad Sidi Ahmad Ou Musa from their zawiya of Iligh in the Tazarwalt, the Tafilalt and the Saharan region by the Filali sharifs, the centre of Morocco by the murabitum of Dila' and the Gharb/Habt by the mujahid, al-Ayashi, and later al-Khadir Ghailan. On the Bu Regreg, the Morisco refugees from Spain had also repudiated Sadian authority, proclaiming themselves into an independent republic which treated with the European Powers on a sovereign basis. Such was the background of division and rivalry against which the Alawi dynasty was established by al-Rashid. It is the politics of this period of power-vacuum, the period between Sadian decadence and the rise of the Alawis, that is the object of this study. The central feature of the investigation is the Jewish connection with the accession to power of the new dynasty. The assassination of a wealthy Jew or Jewish King by al-Rashid, an event commonly accepted as a fact of Moroccan national history, - it is the origin of the annual feast of students in Fes, the id al-tolba - is here subjected to a critical reassessment

    Editorial: Insect physiological changes during insect-plant interaction

    Get PDF
    The interactions between phytophagous insects and their host plants result from a long and continuous evolutionary process (Beran and Petschenka, 2022). Such ecological relationships led to an extraordinary diversity of insects and shaped their complex physiological systems (Wheat et al., 2007). The impacts of host plants on the physiology of herbivorous insects have increasingly become a paramount focus that should not be ignored. Chemical compounds’ composition of plants have not only significant variations in the inter/intra species aspect but also show spatiotemporal variations in different developmental stages and tissue types, or under changeable environments in nature, which lead to the resource assimilation and fitness challenges of insects (Delucia et al., 2012; Brütting et al., 2017). These close interations with plants affect the ecological plasticity of the performance of insect herbivores (Barker et al., 2019). Currently, in-depth exploration of the host plants’ effect on insects has become a research hotspot of insect physiology, however to test the highly complex hypothesis can be difficult. The current Research Topic aimed to highlight the recent developments on 1) how physiological changes occurred in herbivores during their interaction with host plants, 2) how these physiological changes in insects could be affected by other biotic factors

    Spodoptera frugiperda population structure and influence of farmers’ practices on gut biodiversity for sustainable management of the pest in Kenya

    Get PDF
    Fall armyworm (FAW), Spodoptera frugiperda, is a highly polyphagous pest that recently invaded Kenya, among other African countries. Information on the pest’s genetic diversity and mechanisms conferring insecticide resistance, in addition to farmers’ knowledge and perceptions on the applicable mitigation measures, inform the development of sustainable management strategies. Therefore, this study collected cross-sectional data from 800 farmers in Kenya and documented their knowledge and perceptions on FAW and factors influencing their choice of FAW control methods. Additionally, we identified the strains present in 8 counties in Kenya using the mitochondrial Cytochrome Oxidase sub-unit I (mt COI) gene, and correlated pesticide use to gut microbiome diversity via 16S rRNA metagenomics to investigate the probable contribution of gut bacteria towards insecticide resistance evolution. All farmers reported FAW infestations, and 24% reported limited and total non-response of FAW to insecticides. Fall armyworm rice-strain and corn-strain were detected ravaging corn fields. However, the corn-strain revealed higher microbial diversity than the rice-strain. Furthermore, pathogenic bacterial genera were elevated in the insect gut in both corn and rice strains after chemical-treatments. Insecticide–endosymbiont interactions should be further explored, and farmers’ training on effective alternative pest control methods is recommended

    Integrated Management of Aphis craccivora in Cowpea Using Intercropping and Entomopathogenic Fungi under Field Conditions

    Get PDF
    Cowpea aphid, Aphis craccivora, is a major cowpea pest. Cowpea–cereal intercrop alone does not effectively manage the pest. Use of pesticides in intercrop leads to health and environmental risks. Fungal-based biopesticides offer a better option because they are environment- and consumer-friendly. This study assessed the combined effect of Metarhizium anisopliae ICIPE 62 and cowpea–maize intercrop against A. craccivora under six treatments: (1) untreated cowpea monocrop, (2) untreated cowpea–maize intercrop, (3) cowpea monocrop + ICIPE 62, (4) cowpea–maize intercrop + ICIPE 62, (5) cowpea monocrop + Duduthrin insecticide, and (6) cowpea–maize intercrop + Duduthrin during three seasons (long rainy/cold and dry/short rainy). In the cold and dry season, cowpea–maize intercrop treated with ICIPE 62 recorded the lowest infestation/cowpea damage, whereas the leaf yield was comparable to cowpea monocrop treated with ICIPE 62. In the short rainy season, the cowpea–maize intercrop treated with ICIPE 62 recorded the lowest infestation/damage, whereas leaf yield was similar to cowpea–maize intercrop treated with ICIPE 62 in the cold and dry season. Duduthrin in monocrop and intercrop did not reduce aphid infestation/cowpea damage levels in all the seasons. Although the efficacy of M. anisopliae ICIPE 62-based biopesticide could be affected by seasons, it successfully controlled aphid population in cowpea–maize intercrop under field conditions without affecting aphid-associated natural enemies.Peer Reviewe

    One stone for two birds: Endophytic fungi promote maize seedlings growth and negatively impact the life history parameters of the fall armyworm, Spodoptera frugiperda

    Get PDF
    The fall armyworm (FAW) Spodoptera frugiperda, is a voracious pest of cereals native to the Americas and which invaded Africa in 2016. Chemical control is the main management option, which however remains ineffective and unsustainable. Fungal endophytes are increasingly used as alternative for the management of insect pests of economic importance. This study assessed the potential of eight endophytic fungal isolates to colonize maize plant and their ability to promote seedlings growth through seed and foliar inoculations, as well as their suppressive effects on FAW. Fungal colonization rates of different plant parts by the endophytes varied as per the inoculation methods. Beauveria bassiana ICIPE 279 colonized more than 60% of all the seedling parts while B. bassiana G1LU3 only colonized stem (25%) and leaf (5%) tissues through foliar inoculation. Trichoderma atroviride F2S21, T. asperellum M2RT4, T. harzianum F2R41, Trichoderma sp. F2L41, Hypocrea lixii F3ST1 and Fusarium proliferatum F2S51 successfully colonized all the plant parts and therefore were selected and further evaluated through seed inoculation for their endophytic persistence, effect on plant growth, and pathogenicity to Spodoptera frugiperda immature and adult stages. Weekly assessment showed varied effect of the endophytes on maize plant growth parameters compared to the control. During the first week, percentage colonization of the plant parts ranges between 90%–100%, 65%–100%, and 60%–100%, in the roots, stems, and leaves, respectively for all the five tested isolates. However, the colonization pattern/rates significantly decreased over time for H. lixii F3ST1 in the stems and leaves, and for T. harzianum F2R41 in the leaves and for T. asperellum M2RT4 in the roots. In addition, T. harzianum F2R41 outperformed all the other isolates in boosting the plant height, whereas H. lixii F3ST1 and T. asperellum M2RT4 outperformed all the other isolates in increasing the wet and dry shoots weight. Furthermore, the number of egg masses laid on endophytically-colonized maize plants varied among the treatments. Trichoderma asperellum M2RT4 and H. lixii F3ST1 endophytically-colonized maize plants significantly reduced the number of egg masses and the defoliation/feeding rates of the pest compared to the control. Additionally, T. harzianum F2R41 had the highest negative impact on the pupation and adult emergence of S. frugiperda with a female-biased sex ratio. Our findings indicate that T. asperellum M2RT4, T. harzianum F2R41, and H. lixii F3ST1 hold a potential to be developed as endophytic-fungal-based biopesticides for sustainable management of S. frugiperda and as plant growth promoters

    The Endophyte Trichoderma asperellum M2RT4 induces the systemic release of methyl Salicylate and (Z)-jasmone in tomato plant affecting host location and herbivory of Tuta absoluta

    Get PDF
    The use of endophytic fungi has dramatically increased plant performance through the enhancement of plant protection against abiotic and biotic stressors. We previously demonstrated that the endophytic fungus Trichoderma asperellum M2RT4 improves tomato defenses against the tomato leafminer Tuta absoluta through the reduction of oviposition, leafmining, pupation, and adult emergence. However, the underlying mechanism by which the presence of this endophytic fungus within tomato host plant affects T. absoluta host selection and life-history traits is unknown. We tested the behavioral responses of T. absoluta in Y-tube olfactometer bioassays and found that females preferred non-inoculated tomato plants against those inoculated by endophytes. Additionally, T. absoluta females were not attracted to non-inoculated infested nor to inoculated-infested tomato plants. Chemical analysis revealed the emission of methyl salicylate in inoculated tomato plant and an increase in the amounts of monoterpenes emitted from non-inoculated infested plants. Additionally, we found that upon herbivory, T. asperellum M2RT4 modulates tomato plant chemistry through the production of (Z)-jasmone thus activating both salicylic and jasmonic acid defense pathways. Further, T. absoluta females were attracted to monoterpernes including α-pinene, 2-carene, and β-phellandrene but repelled by methyl salicylate. Methyl salicylate could therefore be considered as a good semiochemical-based candidate for sustainable T. absoluta management using a “push-pull” approach. However, in dose-response bioassays, females of T. absoluta did not show any preference to the four component-blend (α-pinene, 2-carene, β-phellandrene, and methyl salicylate). (Z)-jasmone-treated tomato leaflets significantly reduced the leafmining activity of the pest at the concentration of 10 ng/µL and causing the highest larval mortality rate (83%) with the shortest LT50 (1.73 days) 7 days post-treatment. T. asperellum M2RT4 effect on herbivore performance was then (Z)-jasmone-mediated. These findings expand our understanding of how the endophytic fungus T. asperellum M2RT4 could mediate chemical interactions between T. absoluta and its host plant which are potentially important for development of environmentally friendly T. absoluta management programs.https://www.frontiersin.org/journals/plant-sciencedm2022Forestry and Agricultural Biotechnology Institute (FABI)Zoology and Entomolog

    Gut microbiota assemblages of generalist predators are driven by local- and landscape-scale factors

    Get PDF
    ABSTRACT: The gut microbiomes of arthropods have significant impact on key physiological functions such as nutrition, reproduction, behavior, and health. Spiders are diverse and numerically dominant predators in crop fields where they are potentially important regulators of pests. Harnessing spiders to control agricultural pests is likely to be supported by an understanding of their gut microbiomes, and the environmental drivers shaping microbiome assemblages. This study aimed to deciphering the gut microbiome assembly of these invertebrate predators and elucidating potential implications of key environmental constraints in this process. Here, we used high-throughput sequencing to examine for the first time how the assemblages of bacteria in the gut of spiders are shaped by environmental variables. Local drivers of microbiome composition were globally-relevant input use system (organic production vs. conventional practice), and crop identity (Chinese cabbage vs. cauliflower). Landscape-scale factors, proportion of forest and grassland, compositional diversity, and habitat edge density, also strongly affected gut microbiota. Specific bacterial taxa were enriched in gut of spiders sampled from different settings and seasons. These findings provide a comprehensive insight into composition and plasticity of spider gut microbiota. Understanding the temporal responses of specific microbiota could lead to innovative strategies development for boosting biological control services of predators.info:eu-repo/semantics/publishedVersio

    Virulence and horizontal transmission of Metarhizium anisopliae by the adults of the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and the efficacy of oil formulations against its nymphs

    Get PDF
    The pathogenicity of dry conidia and fungal suspensions of 16 entomopathogenic fungal isolates (10 Metarhizium anisopliae and six Beauveria bassiana) was evaluated against adults and second instar nymphs of the greenhouse whitefly, Trialeurodes vaporariorum respectively. All the tested isolates were pathogenic to T. vaporariorum and caused mortality of 45–93% against the adults and 24–89% against the nymphs. However, M. anisopliae strains showed higher virulence to both developmental stages as compared to B. bassiana strains. The three most virulent isolates that caused high mortalities in adults were M. anisopliae ICIPE 18, ICIPE 62 and ICIPE 69, with cumulative mortalities of 82, 91 and 93%, and median lethal times (LT50) of 5.20, 5.05 and 4.78 days, respectively. These isolates were further assessed for spore acquisition and retention by the adult insects at 0, 24, 48 and 72 h after exposure to dry conidia spores. There was no significant difference among isolates on their acquisition by the insects, although the effect of time on the number of spores retained by each insect was significant. For M. anisopliae ICIPE 62 and ICIPE 69, spore number was significantly higher immediately after exposure at 0 h than at 24, 48 and 72 h, whereas for M. anisopliae ICIPE 18, the spore number remained constant for all the days. The infected “donor” insects were able to horizontally transmit the acquired spores to uninfected “recipient” insects causing high mortality rates in both donor and recipient groups. Metarhizium anisopliae ICIPE 7, ICIPE 18 and ICIPE 62 were the most virulent isolates against the nymphs in aqueous formulation during the first screening with >80% mortality. However, in 2% (v/v) oil formulations at 1 108 conidia/ml, canola formulated ICIPE 62, ICIPE 18 and olive formulated ICIPE 18 were the most effective, resulting in 87.8, 88.1 and 99.4% nymphal mortalities respectively and with lower LT50. Oil formulations significantly enhanced the efficacy and virulence of the isolates against the nymphs compared to aqueous formulations.The German Academic Exchange Service (DAAD) through African Regional Postgraduate Programme in Insect Science (ARPPIS) of icipe. The icipe core funding provided by UK’s Foreign, Commonwealth and Development Office (FCDO); Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); the Federal Democratic Republic of Ethiopia; and the Government of the Republic of Kenya.http://www.cell.com/heliyonam2022Forestry and Agricultural Biotechnology Institute (FABI)Zoology and Entomolog

    Endophytic fungi protect tomato and nightshade plants against Tuta absoluta (Lepidoptera : Gelechiidae) through a hidden friendship and cryptic battle

    Get PDF
    Endophytic fungi live within plant tissues without causing any harm to the host, promote its growth, and induce systemic resistance against pests and diseases. To mitigate the challenging concealed feeding behavior of immature stages of Tuta absoluta in both tomato (Solanum lycopersicum) and nightshade (Solanum scabrum) host plants, 15 fungal isolates were assessed for their endophytic and insecticidal properties. Twelve isolates were endophytic to both host plants with varied colonization rates. Host plants endophytically-colonized by Trichoderma asperellum M2RT4, Beauveria bassiana ICIPE 706 and Hypocrea lixii F3ST1 outperformed all the other isolates in reducing significantly the number of eggs laid, mines developed, pupae formed and adults emerged. Furthermore, the survival of exposed adults and F1 progeny was significantly reduced by Trichoderma sp. F2L41 and B. bassiana isolates ICIPE 35(4) and ICIPE 35(15) compared to other isolates. The results indicate that T. asperellum M2RT4, B. bassiana ICIPE 706 and H. lixii F3ST1 have high potential to be developed as endophyticfungal- based biopesticide for the management of T. absoluta.The icipe core funding provided by UK’s Foreign, Commonwealth and Development Office (FCDO); Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); the Federal Democratic Republic of Ethiopia; and the Government of the Republic of Kenya.http://www.nature.com/srepam2021Forestry and Agricultural Biotechnology Institute (FABI)Zoology and Entomolog

    Temperature‑dependent modelling and spatial prediction reveal suitable geographical areas for deployment of two Metarhizium anisopliae isolates for Tuta absoluta management

    Get PDF
    Tuta absoluta is one of the most devastating pests of Solanaceae crops in Africa. We previously demonstrated the efficacy of Metarhizium anisopliae isolates ICIPE 18, ICIPE 20 and ICIPE 665 against adult T. absoluta. However, adequate strain selection and accurate spatial prediction are fundamental to optimize their efficacy and formulations before field deployment. This study therefore assessed the thermotolerance, conidial yield and virulence (between 15 and 35 °C) of these potent isolates. Over 90% of conidia germinated at 20, 25 and 30 °C while no germination occurred at 15 °C. Growth of the three isolates occurred at all temperatures, but was slower at 15, 33 and 35 °C as compared to 20, 25 and 30 °C. Optimum temperatures for mycelial growth and spore production were 30 and 25 °C, respectively. Furthermore, ICIPE 18 produced higher amount of spores than ICIPE 20 and ICIPE 665. The highest mortality occurred at 30 °C for all the three isolates, while the LT50 values of ICIPE 18 and ICIPE 20 were significantly lower at 25 and 30 °C compared to those of ICIPE 665. Subsequently, several nonlinear equations were fitted to the mortality data to model the virulence of ICIPE 18 and ICIPE 20 against adult T. absoluta using the Entomopathogenic Fungi Application (EPFA) software. Spatial prediction revealed suitable locations for ICIPE 18 and ICIPE 20 deployment against T. absoluta in Kenya, Tanzania and Uganda. Our findings suggest that ICIPE 18 and ICIPE 20 could be considered as effective candidate biopesticides for an improved T. absoluta management based on temperature and location-specific approach.The African Union (AU), UK’s Foreign, Commonwealth & Development Office (FCDO) through the International Centre of Insect Physiology and Ecology (icipe). The icipe core funding provided by UK’s Foreign, Commonwealth & Development Office (FCDO); the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC); the Federal Democratic Republic of Ethiopia and the Government of the Republic of Kenya.https://www.nature.com/srepam2022Forestry and Agricultural Biotechnology Institute (FABI)Zoology and Entomolog
    • …
    corecore