1,696 research outputs found
Capacity Bounds and Concatenated Codes Over Segmented Deletion Channels
Cataloged from PDF version of article.We develop an information theoretic characterization
and a practical coding approach for segmented deletion
channels. Compared to channels with independent and identically
distributed (i.i.d.) deletions, where each bit is independently
deleted with an equal probability, the segmentation assumption
imposes certain constraints, i.e., in a block of bits of a certain
length, only a limited number of deletions are allowed to occur.
This channel model has recently been proposed and motivated
by the fact that for practical systems, when a deletion error
occurs, it is more likely that the next one will not appear
very soon. We first argue that such channels are information
stable, hence their channel capacity exists. Then, we introduce
several upper and lower bounds with two different methods in an
attempt to understand the channel capacity behavior. The first
scheme utilizes certain information provided to the transmitter
and/or receiver while the second one explores the asymptotic
behavior of the bounds when the average bit deletion rate is
small. In the second part of the paper, we consider a practical
channel coding approach over a segmented deletion channel.
Specifically, we utilize outer LDPC codes concatenated with inner
marker codes, and develop suitable channel detection algorithms
for this scenario. Different maximum-a-posteriori (MAP) based
channel synchronization algorithms operating at the bit and
symbol levels are introduced, and specific LDPC code designs are
explored. Simulation results clearly indicate the advantages of the
proposed approach. In particular, for the entire range of deletion
probabilities less than unity, our scheme offers a significantly
larger transmission rate compared to the other existing solutions
in the literature
Capacity bounds and concatenated codes over segmented deletion channels
We develop an information theoretic characterization and a practical coding approach for segmented deletion channels. Compared to channels with independent and identically distributed (i.i.d.) deletions, where each bit is independently deleted with an equal probability, the segmentation assumption imposes certain constraints, i.e., in a block of bits of a certain length, only a limited number of deletions are allowed to occur. This channel model has recently been proposed and motivated by the fact that for practical systems, when a deletion error occurs, it is more likely that the next one will not appear very soon. We first argue that such channels are information stable, hence their channel capacity exists. Then, we introduce several upper and lower bounds with two different methods in an attempt to understand the channel capacity behavior. The first scheme utilizes certain information provided to the transmitter and/or receiver while the second one explores the asymptotic behavior of the bounds when the average bit deletion rate is small. In the second part of the paper, we consider a practical channel coding approach over a segmented deletion channel. Specifically, we utilize outer LDPC codes concatenated with inner marker codes, and develop suitable channel detection algorithms for this scenario. Different maximum-a-posteriori (MAP) based channel synchronization algorithms operating at the bit and symbol levels are introduced, and specific LDPC code designs are explored. Simulation results clearly indicate the advantages of the proposed approach. In particular, for the entire range of deletion probabilities less than unity, our scheme offers a significantly larger transmission rate compared to the other existing solutions in the literature. © 1972-2012 IEEE
On capacity and coding for segmented deletion channels
We consider binary deletion channels with a segmentation assumption which appears to be suited for more practical scenarios. Unlike the binary independent and identically distributed (i.i.d.) deletion channel where each bit is independently deleted with an equal probability, the segmentation assumption prohibits certain transmitted bits to be deleted, i.e., in a block of bits of a certain length, only a limited number of deletions can occur. We first propose several upper and lower capacity bounds for the segmented deletion channel. Then we focus on an interleaved concatenation of an outer low-density parity check (LDPC) code with error-correction capabilities and an inner marker code with synchronization capabilities over these channels. With the help of a specifically designed maximum-a-posteriori (MAP) detector, we demonstrate reliable transmission at higher code rates than the existing ones reported in the literature. © 2011 IEEE
Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry
We present a versatile, high-brightness, guided-wave source of polarization
entangled photons, emitted at a telecom wavelength. Photon-pairs are generated
using an integrated type-0 nonlinear waveguide, and subsequently prepared in a
polarization entangled state via a stabilized fiber interferometer. We show
that the single photon emission wavelength can be tuned over more than 50 nm,
whereas the single photon spectral bandwidth can be chosen at will over more
than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing
entanglement analysis, we demonstrate a high degree of control of the quantum
state via the violation of the Bell inequalities by more than 40 standard
deviations. This makes this scheme suitable for a wide range of quantum optics
experiments, ranging from fundamental research to quantum information
applications. We report on details of the setup, as well as on the
characterization of all included components, previously outlined in F. Kaiser
et al. (2013 Laser Phys. Lett. 10, 045202).Comment: 16 pages, 7 figure
Neuroprotective Effect of Combination Therapy of Glatiramer Acetate and Epigallocatechin-3-Gallate in Neuroinflammation
Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system. However, studies of MS and the animal model, experimental autoimmune encephalomyelitis (EAE), indicate that neuronal pathology is the principle cause of clinical disability. Thus, there is need to develop new therapeutic strategies that not only address immunomodulation but also neuroprotection. Here we show that the combination therapy of Glatiramer acetate (GA), an immunomodulatory MS therapeutic, and the neuroprotectant epigallocatechin-3-gallate (EGCG), the main phenol in green tea, have synergistic protective effects in vitro and in the EAE model. EGCG and GA together led to increased protection from glutamate- and TRAIL-induced neuronal cell death in vitro. EGCG combined with GA induced regeneration of hippocampal axons in an outgrowth assay. The combined application of EGCG and GA did not result in unexpected adverse events in vivo. Neuroprotective and neuroregenerative effects could be translated in the in vivo model, where combination treatment with EGCG and GA significantly delayed disease onset, strongly reduced clinical severity, even after onset of symptoms and reduced inflammatory infiltrates. These results illustrate the promise of combining neuroprotective and anti-inflammatory treatments and strengthen the prospects of EGCG as an adjunct therapy for neuroinflammatory and neurodegenerative diseases
Testing the dynamics of high energy scattering using vector meson production
I review work on diffractive vector meson production in photon-proton
collisions at high energy and large momentum transfer, accompanied by proton
dissociation and a large rapidity gap. This process provides a test of the high
energy scattering dynamics, but is also sensitive to the details of the
treatment of the vector meson vertex.
The emphasis is on the description of the process by a solution of the
non-forward BFKL equation, i.e. the equation describing the evolution of
scattering amplitudes in the high-energy limit of QCD. The formation of the
vector meson and the non-perturbative modeling needed is also briefly
discussed.Comment: 17 pages, 8 figures. Brief review to appear in Mod. Phys. Lett.
Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis
Objective: To assess in an observational study whether serum peptide antibody reactivities may distinguish aquaporin-4 (AQP4) antibody (Ab)–positive and -negative neuromyelitis optica spectrum disorders (NMOSD) and relapsing-remitting multiple sclerosis (RRMS). Methods: We screened 8,700 peptides that included human and viral antigens of potential relevance for inflammatory demyelinating diseases and random peptides with pooled sera from different patient groups and healthy controls to set up a customized microarray with 700 peptides. With this microarray, we tested sera from 66 patients with AQP4-Ab-positive (n = 16) and AQP4-Ab-negative (n = 19) NMOSD, RRMS (n = 11), and healthy controls (n = 20). Results: Differential peptide reactivities distinguished NMOSD subgroups from RRMS in 80% of patients. However, the 2 NMOSD subgroups were not well-discriminated, although those patients are clearly separated by their antibody reactivities against AQP4 in cell-based assays. Elevated reactivities to myelin and Epstein-Barr virus peptides were present in RRMS and to AQP4 and AQP1 peptides in AQP4-Ab-positive NMOSD. Conclusions: While AQP4-Ab-positive and -negative NMOSD subgroups are not well-discriminated by peptide antibody reactivities, our findings suggest that peptide antibody reactivities may have the potential to distinguish between both NMOSD subgroups and MS. Future studies should thus concentrate on evaluating peptide antibody reactivities for the differentiation of AQP4-Ab-negative NMOSD and MS
Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions
We study the sensitivity of our recent MSTW 2008 NLO and NNLO PDF analyses to
the values of the charm- and bottom-quark masses, and we provide additional
public PDF sets for a wide range of these heavy-quark masses. We quantify the
impact of varying m_c and m_b on the cross sections for W, Z and Higgs
production at the Tevatron and the LHC. We generate 3- and 4-flavour versions
of the (5-flavour) MSTW 2008 PDFs by evolving the input PDFs and alpha_S
determined from fits in the 5-flavour scheme, including the eigenvector PDF
sets necessary for calculation of PDF uncertainties. As an example of their
use, we study the difference in the Z total cross sections at the Tevatron and
LHC in the 4- and 5-flavour schemes. Significant differences are found,
illustrating the need to resum large logarithms in Q^2/m_b^2 by using the
5-flavour scheme. The 4-flavour scheme is still necessary, however, if cuts are
imposed on associated (massive) b-quarks, as is the case for the experimental
measurement of Z b bbar production and similar processes.Comment: 40 pages, 11 figures. Grids can be found at
http://projects.hepforge.org/mstwpdf/ and in LHAPDF V5.8.4. v2: version
published in EPJ
Inclusive production of a pair of hadrons separated by a large interval of rapidity in proton collisions
We consider within QCD collinear factorization the inclusive process , where the pair of identified hadrons, , having large
transverse momenta is produced in high-energy proton-proton collisions. In
particular, we concentrate on the kinematics where the two identified hadrons
in the final state are separated by a large interval of rapidity . In
this case the (calculable) hard part of the reaction receives large higher
order corrections . We provide a theoretical input
for the resummation of such contributions with next-to-leading logarithmic
accuracy (NLA) in the BFKL approach. Specifically, we calculate in NLA the
vertex (impact-factor) for the inclusive production of the identified hadron.
This process has much in common with the widely discussed Mueller-Navelet jets
production and can be also used to access the BFKL dynamics at proton
colliders. Another application of the obtained identified-hadron vertex could
be the NLA BFKL description of inclusive forward hadron production in DIS.Comment: 29 pages, 9 figures; corrected few typos and added an acknowledgment;
version to be published on JHEP. arXiv admin note: substantial text overlap
with arXiv:1202.108
- …