16 research outputs found

    Light unbound nuclear systems beyond the dripline

    Get PDF
    Starting from the first observation of the halo phenomenon 20 years ago, more and more neutron-rich light nuclei were observed. The study of unstable nuclear systems beyond the dripline is a relatively new branch of nuclear physics. In the present work, the results of an experiment at GSI (Darmstadt) with relativistic beams of the halo nuclei 8He, 11Li and 14Be with energies of 240, 280 and 305 MeV/nucleon, respectively, impinging on a liquid hydrogen target are discussed. Neutron/proton knockout reactions lead to the formation of unbound systems, followed by their immediate decay. The experimental setup, consisting of the neutron detector LAND, the dipole spectrometer ALADIN and different types of tracking detectors, allows the reconstruction of the momentum vectors of all reaction products measured in coincidence. The properties of unbound nuclei are investigated by reconstructing the relative-energy spectra as well as by studying the angular correlations between the reaction products. The observed systems are 9He, 10He, 10Li, 12Li and 13Li. The isotopes 12Li and 13Li are observed for the first time. They are produced in the 1H(14Be, 2pn)12Li and 1H(14Be, 2p)13Li knockout reactions. The obtained relative-energy spectrum of 12Li is described as a single virtual s-state with a scattering length of as = -22;13.7(1.6) fm. The spectrum of 13Li is interpreted as a resonance at an energy of Er = 1.47(13) MeV and a width of Gamma ~ 2 MeV superimposed on a broad correlated background distribution. The isotope 10Li is observed after one-neutron knockout from the halo nucleus 11Li. The obtained relative-energy spectrum is described by a low-lying virtual s-state with a scattering length as = -22.4(4.8) fm and a p-wave resonance with Er = 0.566(14) MeV and Gamma = 0.548(30) MeV, in agreement with previous experiments. The observation of the nucleus 8He in coincidence with one or two neutrons, as a result of proton knockout from 11Li, allows to reconstruct the relative-energy spectra for the heavy helium isotopes, 9He and 10He. The low-energy part of the 9He spectrum is described by a virtual s-state with a scattering length as = -3.16(78) fm. In addition, two resonance states with l 6= 0 at energies of 1.33(8) and 2.4 MeV are observed. For the 10He spectrum, two interpretations are possible. It can be interpreted as a superposition of a narrow resonance at 1.42(10) MeV and a broad correlated background distribution. Alternatively, the spectrum is being well described by two resonances at energies of 1.54(11) and 3.99(26) MeV. Additionally, three-body energy and angular correlations in 10He and 13Li nuclei at the region of the ground state (0 < ECnn < 3 MeV) are studied, providing information about structure of these unbound nuclear systems

    Evaluation and Parameter Analysis of Burn up Calculations for the Assessment of Radioactive Waste

    Get PDF
    The purpose of this work is to define and verify the range of validity and limitations of correlations used for nuclear waste characterization and to scrutinize the dependencies and propagation of uncertainties that affect the waste inventory declarations and their independent verification. This is accomplished by numerical assessment and simulation of waste production using well accepted codes SCALE 6.0 and 6.1 to simulate the cooling time and burn up of a spent fuel element. The simulations are benchmarked against spent fuel from the pressurized water reactor Obrigheim in Germany for which sufficiently precise experimental reference data are available

    Determination and analysis of the uncertainty bandwidth of the nuclear inventory for assessment of radioactive waste

    Get PDF
    Waste packages often contain wastes forms of different types of spent fuels and of various operational history, whereas information about secondary reactor parameters may not be available. In this case the so-called characteristic fuel burn-up and cooling time are determined. These values are obtained from a correlations involving key-nuclides (easy-to-measure nuclides). Each correlation is associated with corresponding uncertainty bandwidth. The bandwidth strongly depends on secondary reactor parameters such as initial enrichment, temperature and density of the fuel and moderator, reactor‘s operational history. The purpose of our investigation is to understand the limitations of the scaling and correlations, to define and verify the range of validity, and to scrutinize the dependencies and propagation of uncertainties that affect the waste inventory declarations and their independent verification. This is accomplished by numerical assessment and simulation of the waste production processes using the widely accepted codes SCALE 6.0 and 6.1 to simulate the cooling time and burn-up of a spent fuel element

    Determination of Bandwidths of PWR-UO2_{2} Spent Fuel Radionuclide Inventory Based on Real Operational History Data

    No full text
    An important requirement for the official approval of the safe final disposal of SNF is a comprehensive specification and declaration of the nuclear inventory in SNF by the waste supplier. In the verification process both the radionuclide (RN) activities and the associated uncertainties are required. Burn-up (BU) calculations based on typical and generic reactor operational parameters do not encompass any possible uncertainties observed in real reactor operations. At the same time, details of irradiation history are often missing, which complicates the assessment of declared RN inventories. Here, we present a set of burn-up calculations, in which the real operational histories of 339 published or anonymized PWR fuel assemblies (FA) are taken into account. These histories provide information about ranges of values of the associated secondary reactor parameters (SRP), which are useful for the 'SRP analysis'. Hence, we can calculate realistic variations in the spectrum of RN inventories. SCALE 6.1 with the ENDF/B-VII.0 library has been employed for the burn-up calculations. The results have been validated using experimental measurements from the online database SFCOMPO
    corecore