721 research outputs found

    Catalysis by Dehydroepiandrosterone Sulfotransferase

    Get PDF
    ABSTRACT: Cholestero

    Incorporating scale dependence in disease burden estimates:the case of human African trypanosomiasis in Uganda

    Get PDF
    The WHO has established the disability-adjusted life year (DALY) as a metric for measuring the burden of human disease and injury globally. However, most DALY estimates have been calculated as national totals. We mapped spatial variation in the burden of human African trypanosomiasis (HAT) in Uganda for the years 2000-2009. This represents the first geographically delimited estimation of HAT disease burden at the sub-country scale.Disability-adjusted life-year (DALY) totals for HAT were estimated based on modelled age and mortality distributions, mapped using Geographic Information Systems (GIS) software, and summarised by parish and district. While the national total burden of HAT is low relative to other conditions, high-impact districts in Uganda had DALY rates comparable to the national burden rates for major infectious diseases. The calculated average national DALY rate for 2000-2009 was 486.3 DALYs/100 000 persons/year, whereas three districts afflicted by rhodesiense HAT in southeastern Uganda had burden rates above 5000 DALYs/100 000 persons/year, comparable to national GBD 2004 average burden rates for malaria and HIV/AIDS.These results provide updated and improved estimates of HAT burden across Uganda, taking into account sensitivity to under-reporting. Our results highlight the critical importance of spatial scale in disease burden analyses. National aggregations of disease burden have resulted in an implied bias against highly focal diseases for which geographically targeted interventions may be feasible and cost-effective. This has significant implications for the use of DALY estimates to prioritize disease interventions and inform cost-benefit analyses

    Chicken embryo as an experimental model

    Get PDF
    The chicken embryo is a multifaceted experimental and alternative model providing analytical data for several approaches to testing substances. Many research reports have focused on toxicity and drug efficacy using this model, proving that CE is excellent alternative model for such purposes. Main the advantages of this model are economic, bioethical components. day — before the formation of the neural tube.Куриный эмбрион (КЭ) представляет собой многогранную экспериментальную модель, предоставляющую аналитические данные для нескольких подходов к тестированию веществ. Многие отчеты исследований были сосредоточены на токсичности или эффективности лекарств с помощью этой модели, доказывая, что КЭ является отличной альтернативной моделью для таких целей. Основными преимуществами такой модели становятся экономическая и биоэтическая составляющие

    Daptomycin versus vancomycin plus gentamicin for treatment of bacteraemia and endocarditis due to Staphylococcus aureus: subset analysis of patients infected with methicillin-resistant isolates

    Get PDF
    Objectives: In a prospective, randomized trial, daptomycin was non-inferior to standard therapy for Staphylococcus aureus bacteraemia and right-sided endocarditis. Since rates of infection due to methicillin-resistant S. aureus (MRSA) infection are increasing and treatment outcomes for bacteraemia caused by MRSA are generally worse than those observed with methicillin-susceptible S. aureus bacteraemia, clinical characteristics and treatment results in the trial’s pre-specified subset of patients with MRSA were analysed. Methods: Clinical characteristics and outcomes of patients receiving daptomycin were compared with those receiving vancomycin plus low-dose gentamicin. Success was defined as clinical improvement with clearance of bacteraemia among patients who completed adequate therapy, received no potentially effective non-study antibiotics and had negative blood cultures 6 weeks after end of therapy. Results: Twenty of the 45 (44.4%) daptomycin patients and 14 of the 43 (32.6%) vancomycin/gentamicin patients were successfully treated (difference 11.9%; confidence interval −8.3 to 32.1). Success rates for daptomycin versus vancomycin/gentamicin were 45% versus 27% in complicated bacteraemia, 60% versus 45% in uncomplicated bacteraemia and 50% versus 50% in right-sided MRSA endocarditis. Cure rates in patients with septic emboli and in patients who received pre-enrolment vancomycin were similar between treatment groups. However, in both treatment groups, success rates were lower in the elderly (≥75 years). Persisting or relapsing bacteraemia occurred in 27% of daptomycin and 21% of vancomycin/gentamicin patients; among these patients, MICs of ≥2 mg/L occurred in five daptomycin and four vancomycin/gentamicin patients. The clinical course of several patients may have been influenced by lack of surgical intervention. Conclusions: Daptomycin was an effective alternative to vancomycin/gentamicin for MRSA bacteraemia or right-sided endocarditis

    Infections with Immunogenic Trypanosomes Reduce Tsetse Reproductive Fitness: Potential Impact of Different Parasite Strains on Vector Population Structure

    Get PDF
    The parasite Trypanosoma brucei rhodesiense and its insect vector Glossina morsitans morsitans were used to evaluate the effect of parasite clearance (resistance) as well as the cost of midgut infections on tsetse host fitness. Tsetse flies are viviparous and have a low reproductive capacity, giving birth to only 6–8 progeny during their lifetime. Thus, small perturbations to their reproductive fitness can have a major impact on population densities. We measured the fecundity (number of larval progeny deposited) and mortality in parasite-resistant tsetse females and untreated controls and found no differences. There was, however, a typanosome-specific impact on midgut infections. Infections with an immunogenic parasite line that resulted in prolonged activation of the tsetse immune system delayed intrauterine larval development resulting in the production of fewer progeny over the fly's lifetime. In contrast, parasitism with a second line that failed to activate the immune system did not impose a fecundity cost. Coinfections favored the establishment of the immunogenic parasites in the midgut. We show that a decrease in the synthesis of Glossina Milk gland protein (GmmMgp), a major female accessory gland protein associated with larvagenesis, likely contributed to the reproductive lag observed in infected flies. Mathematical analysis of our empirical results indicated that infection with the immunogenic trypanosomes reduced tsetse fecundity by 30% relative to infections with the non-immunogenic strain. We estimate that a moderate infection prevalence of about 26% with immunogenic parasites has the potential to reduce tsetse populations. Potential repercussions for vector population growth, parasite–host coevolution, and disease prevalence are discussed

    Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages.

    Get PDF
    Tuned and distinct responses of macrophages and dendritic cells to Toll-like receptor 4 (TLR4) activation induced by lipopolysaccharide (LPS) underpin the balance between innate and adaptive immunity. However, the molecule(s) that confer these cell-type-specific LPS-induced effects remain poorly understood. Here we report that the integrin α(M) (CD11b) positively regulates LPS-induced signalling pathways selectively in myeloid dendritic cells but not in macrophages. In dendritic cells, which express lower levels of CD14 and TLR4 than macrophages, CD11b promotes MyD88-dependent and MyD88-independent signalling pathways. In particular, in dendritic cells CD11b facilitates LPS-induced TLR4 endocytosis and is required for the subsequent signalling in the endosomes. Consistent with this, CD11b deficiency dampens dendritic cell-mediated TLR4-triggered responses in vivo leading to impaired T-cell activation. Thus, by modulating the trafficking and signalling functions of TLR4 in a cell-type-specific manner CD11b fine tunes the balance between adaptive and innate immune responses initiated by LPS

    The Influence of Sex and Fly Species on the Development of Trypanosomes in Tsetse Flies

    Get PDF
    Unlike other dipteran disease vectors, tsetse flies of both sexes feed on blood and transmit pathogenic African trypanosomes. During transmission, Trypanosoma brucei undergoes a complex cycle of proliferation and development inside the tsetse vector, culminating in production of infective forms in the saliva. The insect manifests robust immune defences throughout the alimentary tract, which eliminate many trypanosome infections. Previous work has shown that fly sex influences susceptibility to trypanosome infection as males show higher rates of salivary gland (SG) infection with T. brucei than females. To investigate sex-linked differences in the progression of infection, we compared midgut (MG), proventriculus, foregut and SG infections in male and female Glossina morsitans morsitans. Initially, infections developed in the same way in both sexes: no difference was observed in numbers of MG or proventriculus infections, or in the number and type of developmental forms produced. Female flies tended to produce foregut migratory forms later than males, but this had no detectable impact on the number of SG infections. The sex difference was not apparent until the final stage of SG invasion and colonisation, showing that the SG environment differs between male and female flies. Comparison of G. m. morsitans with G. pallidipes showed a similar, though less pronounced, sex difference in susceptibility, but additionally revealed very different levels of trypanosome resistance in the MG and SG. While G. pallidipes was more refractory to MG infection, a very high proportion of MG infections led to SG infection in both sexes. It appears that the two fly species use different strategies to block trypanosome infection: G. pallidipes heavily defends against initial establishment in the MG, while G. m. morsitans has additional measures to prevent trypanosomes colonising the SG, particularly in female flies. We conclude that the tsetse-trypanosome interface works differently in G. m. morsitans and G. pallidipes
    corecore