34 research outputs found

    Plasma for Electrification of Chemical Industry: a Case Study on CO2 Reduction

    Get PDF
    Significantly increasing the share of (intermittent) renewable power in the chemical industry is imperative to meet increasingly stricter limits on CO2 exhaust that are being implemented within Europe. This paper aims to evaluate the potential of a plasma process that converts input CO2 into a pure stream of CO to aid in renewable energy penetration in this sector. A realistic process design is constructed to serve as a basis for an economical analysis. The manufacturing cost price of CO is estimated at 1.2 kUS$/ton CO. A sensitivity analysis shows that separation is the dominant cost factor, so that improving conversion is currently more effective to lower the price than e.g. energy efficiency.</p

    Substance use risk profiles and associations with early substance use in adolescence

    Get PDF
    We examined whether anxiety sensitivity, hopelessness, sensation seeking, and impulsivity (i.e., revised version of the Substance Use Risk Profile Scale) would be related to the lifetime prevalence and age of onset of alcohol, tobacco, and cannabis use, and to polydrug use in early adolescence. Baseline data of a broader effectiveness study were used from 3,783 early adolescents aged 11–15 years. Structural equation models showed that hopelessness and sensation seeking were indicative of ever-used alcohol, tobacco or cannabis and for the use of more than one substance. Furthermore, individuals with higher levels of hopelessness had a higher chance of starting to use alcohol or cannabis at an earlier age, but highly anxiety sensitive individuals were less likely to start using alcohol use at a younger age. Conclusively, early adolescents who report higher levels of hopelessness and sensation seeking seem to be at higher risk for an early onset of substance use and poly substance use

    Process intensification education contributes to sustainable development goals: Part 2

    Get PDF
    Achieving the United Nations sustainable development goals requires industry and society to develop tools and processes that work at all scales, enabling goods delivery, services, and technology to large conglomerates and remote regions. Process Intensification (PI) is a technological advance that promises to deliver means to reach these goals, but higher education has yet to totally embrace the program. Here, we present practical examples on how to better teach the principles of PI in the context of the Bloom's taxonomy and summarise the current industrial use and the future demands for PI, as a continuation of the topics discussed in Part 1. In the appendices, we provide details on the existing PI courses around the world, as well as teaching activities that are showcased during these courses to aid students’ lifelong learning. The increasing number of successful commercial cases of PI highlight the importance of PI education for both students in academia and industrial staff.We acknowledge the sponsors of the Lorentz’ workshop on“Educating in PI”: The MESA+Institute of the University of Twente,Sonics and Materials (USA) and the PIN-NL Dutch Process Intensi-fication Network. DFR acknowledges support by The Netherlands Centre for Mul-tiscale Catalytic Energy Conversion (MCEC), an NWO Gravitationprogramme funded by the Ministry of Education, Culture and Sci-ence of the government of The Netherlands. NA acknowledges the Deutsche Forschungsgemeinschaft (DFG)- TRR 63¨Integrierte Chemische Prozesse in flüssigen Mehrphasen-systemen¨(Teilprojekt A10) - 56091768. The participation by Robert Weber in the workshop and thisreport was supported by Laboratory Directed Research and Devel-opment funding at Pacific Northwest National Laboratory (PNNL).PNNL is a multiprogram national laboratory operated for theUS Department of Energy by Battelle under contract DE-AC05-76RL0183

    Process intensification education contributes to sustainable development goals : part 1

    No full text
    In 2015 all the United Nations (UN) member states adopted 17 sustainable development goals (UN-SDG) as part of the 2030 Agenda, which is a 15-year plan to meet ambitious targets to eradicate poverty, protect the environment, and improve the quality of life around the world. Although the global community has progressed, the pace of implementation must accelerate to reach the UN-SDG time-line. For this to happen, professionals, institutions, companies, governments and the general public must become cognizant of the challenges that our world faces and the potential technological solutions at hand, including those provided by chemical engineering. Process intensification (PI) is a recent engineering approach with demonstrated potential to significantly improve process efficiency and safety while reducing cost. It offers opportunities for attaining the UN-SDG goals in a cost-effective and timely manner. However, the pedagogical tools to educate undergraduate, graduate students, and professionals active in the field of PI lack clarity and focus. This paper sets out the state-of-the-art, main discussion points and guidelines for enhanced PI teaching, deliberated by experts in PI with either an academic or industrial background, as well as representatives from government and specialists in pedagogy gathered at the Lorentz Center (Leiden, The Netherlands) in June 2019 with the aim of uniting the efforts on education in PI and produce guidelines. In this Part 1, we discuss the societal and industrial needs for an educational strategy in the framework of PI. The terminology and background information on PI, related to educational implementation in industry and academia, are provided as a preamble to Part 2, which presents practical examples that will help educating on Process Intensification
    corecore