14 research outputs found

    The landscape, the swampland and the era of precision cosmology

    Get PDF
    We review the advanced version of the KKLT construction and pure d=4" role="presentation" style="display: inline; line-height: normal; font-size: 13.6px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; color: rgb(0, 0, 0); font-family: arial, verdana, sans-serif; position: relative;">=4d=4 de Sitter supergravity, involving a nilpotent multiplet, with regard to various conjectures that de Sitter state cannot exist in string theory. We explain why we consider these conjectures problematic and not well motivated, and why the recently proposed alternative string theory models of dark energy, ignoring vacuum stabilization, are ruled out by cosmological observations at least at the 3σ" role="presentation" style="display: inline; line-height: normal; font-size: 13.6px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; color: rgb(0, 0, 0); font-family: arial, verdana, sans-serif; position: relative;">33σ level, i.e. with more than 99.7%" role="presentation" style="display: inline; line-height: normal; font-size: 13.6px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border-width: 0px; border-style: initial; color: rgb(0, 0, 0); font-family: arial, verdana, sans-serif; position: relative;">99.7 .7%confidence

    Planck 2018 results: VIII. Gravitational lensing

    No full text
    Theoretical Physic

    Planck 2018 results: V. CMB power spectra and likelihoods

    Get PDF
    Theoretical Physic

    Planck 2018 results: V. CMB power spectra and likelihoods

    No full text
    We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low ( ℓ  <  30) and high ( ℓ  ≄ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the ΛCDM reionization optical-depth parameter τ to better than 15% (in combination with the TT low- ℓ data and the high- ℓ temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with τ . We also update the weaker constraint on τ from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the ΛCDM constraints on the parameters Ξ MC , ω c , ω b , and H 0 by more than 30%, and n s by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5  σ level on the ΛCDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3  σ levels we achieved in 2015 for the temperature data alone on ΛCDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit ΛCDM parameters for the ℓ  <  800 and ℓ  >  800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations

    Planck 2018 results: III. High Frequency Instrument data processing and frequency maps

    No full text
    This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous Planck 2015 release, many of which were used and described already in an intermediate paper dedicated to the Planck polarized data at low multipoles. These improvements enabled the first significant measurement of the reionization optical depth parameter using Planck -HFI data. This paper presents an extensive analysis of systematic effects, including the use of end-to-end simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved, especially the leakage from intensity to polarization. Calibration, based on the cosmic microwave background (CMB) dipole, is now extremely accurate and in the frequency range 100–353 GHz reduces intensity-to-polarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than 0.35 ÎŒ K, an accuracy of order 10 −4 . This is a major legacy from the Planck HFI for future CMB experiments. The removal of bandpass leakage has been improved for the main high-frequency foregrounds by extracting the bandpass-mismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of “frequency maps”, which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. End-to-end simulations have been shown to reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect (analogue-to-digital convertor non-linearity residuals). Using these simulations, we have been able to measure and correct the small frequency calibration bias induced by this systematic effect at the 10 −4 level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the 10 −3 level

    Planck 2018 results: VIII. Gravitational lensing

    No full text
    We present measurements of the cosmic microwave background (CMB) lensing potential using the final Planck 2018 temperature and polarization data. Using polarization maps filtered to account for the noise anisotropy, we increase the significance of the detection of lensing in the polarization maps from 5 σ to 9 σ . Combined with temperature, lensing is detected at 40 σ . We present an extensive set of tests of the robustness of the lensing-potential power spectrum, and construct a minimum-variance estimator likelihood over lensing multipoles 8 ≀  L  ≀ 400 (extending the range to lower L compared to 2015), which we use to constrain cosmological parameters. We find good consistency between lensing constraints and the results from the Planck CMB power spectra within the ΛCDM model. Combined with baryon density and other weak priors, the lensing analysis alone constrains σ 8 Ω m 0.25 = 0.589 ± 0.020 (1 σ errors). Also combining with baryon acoustic oscillation data, we find tight individual parameter constraints, σ 8  = 0.811 ± 0.019, H 0 = 67.9 −1.3 +1.2 km s −1 Mpc −1 , and Ω m = 0.303 −0.018 +0.016 . Combining with Planck CMB power spectrum data, we measure σ 8 to better than 1% precision, finding σ 8  = 0.811 ± 0.006. CMB lensing reconstruction data are complementary to galaxy lensing data at lower redshift, having a different degeneracy direction in σ 8  − Ω m space; we find consistency with the lensing results from the Dark Energy Survey, and give combined lensing-only parameter constraints that are tighter than joint results using galaxy clustering. Using the Planck cosmic infrared background (CIB) maps as an additional tracer of high-redshift matter, we make a combined Planck -only estimate of the lensing potential over 60% of the sky with considerably more small-scale signal. We additionally demonstrate delensing of the Planck power spectra using the joint and individual lensing potential estimates, detecting a maximum removal of 40% of the lensing-induced power in all spectra. The improvement in the sharpening of the acoustic peaks by including both CIB and the quadratic lensing reconstruction is detected at high significance
    corecore