22 research outputs found

    In Situ Photodegradation of Incorporated Polyanion Does Not Alter Prion Infectivity

    Get PDF
    Single-stranded polyanions ≥40 bases in length facilitate the formation of hamster scrapie prions in vitro, and polyanions co-localize with PrPSc aggregates in vivo [1], [2]. To test the hypothesis that intact polyanionic molecules might serve as a structural backbone essential for maintaining the infectious conformation(s) of PrPSc, we produced synthetic prions using a photocleavable, 100-base oligonucleotide (PC-oligo). In serial Protein Misfolding Cyclic Amplification (sPMCA) reactions using purified PrPC substrate, PC-oligo was incorporated into physical complexes with PrPSc molecules that were resistant to benzonase digestion. Exposure of these nuclease-resistant prion complexes to long wave ultraviolet light (315 nm) induced degradation of PC-oligo into 5 base fragments. Light-induced photolysis of incorporated PC-oligo did not alter the infectivity of in vitro-generated prions, as determined by bioassay in hamsters and brain homogenate sPMCA assays. Neuropathological analysis also revealed no significant differences in the neurotropism of prions containing intact versus degraded PC-oligo. These results show that polyanions >5 bases in length are not required for maintaining the infectious properties of in vitro-generated scrapie prions, and indicate that such properties are maintained either by short polyanion remnants, other co-purified cofactors, or by PrPSc molecules alone

    Multilaboratory Comparison of Pneumococcal Multiplex Immunoassays Used in lmmunosurveillance of Streptococcus pneumoniae across Europe

    Get PDF
    Surveillance studies are required to estimate the impact of pneumococcal vaccination in both children and the elderly across Europe. The World Health Organization (WHO) recommends use of enzyme immunoassays (EIAs) as standard methods for immune surveillance of pneumococcal antibodies. However, as levels of antibodies to multiple serotypes are monitored in thousands of samples, a need for a less laborious and more flexible method has evolved. Fluorescent-bead-based multiplex immunoassays (MIAs) are suitable for this purpose. An increasing number of public health and diagnostic laboratories use MIAs, although the method is not standardized and no international quality assessment scheme exists. The EU Pneumo Multiplex Assay Consortium was initiated in 2013 to advance harmonization of MIAs and to create an international quality assessment scheme. In a multilaboratory comparison organized by the consortium, agreement among nine laboratories that used their own optimized MIA was assessed on a panel of 15 reference sera for 13 pneumococcal serotypes with the new WHO standard 007sp. Agreement was assessed in terms of assay accuracy, reproducibility, repeatability, precision, and bias. The results indicate that the evaluated MIAs are robust and reproducible for measurement of vaccine-induced antibody responses. However, some serotype-specific variability in the results was observed in comparisons of polysaccharides from different sources and of different conjugation methods, especially for serotype 4. On the basis of the results, the consortium has contributed to the harmonization of MIA protocols to improve reliability of immune surveillance of Streptococcus pneumoniae

    Endogenous viral complexes with long RNA cosediment with the agent of Creutzfeldt-Jakob disease.

    No full text
    A class of viruslike agents that induces Creutzfeldt-Jakob Disease (CJD) and scrapie remains undefined at the molecular level. Several investigators believe this infectious agent is constituted by a single host protein or 'prion', and have emphasized data that would seem to exclude the presence of any viral nucleic acids. However, more rigorous evaluations in scrapie have shown reasonably abundant nucleic acids. Additionally, in highly purified 120S CJD preparations that have been treated with nucleases, RNAs as long as 6,000 bases have been detected. Few nucleic acids have been characterized in either scrapie or CJD, but previous cloning experiments delineated relatively short LTR regions of the endogenous IAP retrovirus in 120S CJD preparations. We therefore used specific primers encompassing the entire IAP genome to test for the presence of long viral RNAs, and here show approximately 5,000 contiguous bases of the IAP RNA genome can be recovered from reasonable amounts of starting brain. The 3' env region of IAP is comparably truncated in CJD and normal preparations, and we find no evidence for IAP transduction of CJD-specific sequences. Because IAP cores can coencapsidate unrelated sequences, and are unusually resistant to physical and chemical treatments, it was relevant to find if cosedimenting cognate proteins of the IAP core, such as gag, could be detected. The predicted approximately 65 kd acidic gag protein, showing appropriate antigenic and nucleic acid binding features, was apparent in both one and 2-D Western blots. This data strongly indicates specific viral complexes cofractionate with the CJD agent. Interestingly, these nuclease resistant IAPs do not appear to be in morphologically recognizable 'R' particles. This cosedimenting viral assembly therefore provides a paradigm for non-particulate CJD complexes in infectious preparations. In developing strategies to identify a CJD specific sequence, cosedimenting IAPs can be used to assess the quality, length and recovery of RNAs extracted from highly resistant viral complexes

    Retrovirus infection strongly enhances scrapie infectivity release in cell culture

    No full text
    Prion diseases are neurodegenerative disorders associated in most cases with the accumulation in the central nervous system of PrP(Sc) (conformationally altered isoform of cellular prion protein (PrP(C)); Sc for scrapie), a partially protease-resistant isoform of the PrP(C). PrP(Sc) is thought to be the causative agent of transmissible spongiform encephalopathies. The mechanisms involved in the intercellular transfer of PrP(Sc) are still enigmatic. Recently, small cellular vesicles of endosomal origin called exosomes have been proposed to contribute to the spread of prions in cell culture models. Retroviruses such as murine leukemia virus (MuLV) or human immunodeficiency virus type 1 (HIV-1) have been shown to assemble and bud into detergent-resistant microdomains and into intracellular compartments such as late endosomes/multivesicular bodies. Here we report that moloney murine leukemia virus (MoMuLV) infection strongly enhances the release of scrapie infectivity in the supernatant of coinfected cells. Under these conditions, we found that PrP(C), PrP(Sc) and scrapie infectivity are recruited by both MuLV virions and exosomes. We propose that retroviruses can be important cofactors involved in the spread of the pathological prion agent
    corecore