60 research outputs found

    How Manufacturing Industry’s Supply Chain has Impacted During Coving-19 Pandemics (March to June) in Turkish Manufacturing Industry.

    Get PDF
    This study aim is determining how the manufacturing industry has been impacted during COVID pandemic (March to June) in Turkey. The Turkish manufacturing industry has significant importance on Turkey’s economy and has been contributing Turkey’s %22 per cent of Gross Domestic Products. (Koç, Şenel and Kaya, 2018) These products have been contributing by 95% of Turkey’s income from exports. According to the latest report of the Turkish Statistics Institute, the Turkish manufacturing industry has experienced a decreasing by 30%, illustrated in Figure 21. (TUIK, 2020) The data collected by interviewing varies industry professionals who are working or has knowledge about supply chain processes as well as have experiences. The data is collected by using “in-depth interview” technique. The interview questions are designed semi-structured to queries. The data were collected from 6 manufacturing companies through online communications tools such as Zoom, Skype. As a result of the interviews, it is determined that the first, Coronavirus pandemic has increased the importance of domestic suppliers because companies have face problems due to regions such as Asian suppliers’ common issue for industries. The second, the products, which have alternative suppliers, have impacted less than other products. The third, the companies, which have a variety of customer ranges (not a single type of product buyers) has affected less than other companies. Besides, the non-compulsory product has faced critically demand to decrease; in contrast, compulsory products have faced with high demand (Automotive pharmacy, hygiene products). This paper has revealed similar results with some other international research companies results

    The Annealing Effects of ZnO Thin Films on Characteristic Parameters of Au/ZnO Schottky Contacts on n-Si

    Get PDF
    200 nm ZnO thin films have been grown on n type Silicon substrates by DC sputtering technique. One of the thin films has been annealed at 300 ºC for 45 minutes. The Au front contacts on ZnO thin films have been formed by evaporation of Au metal by means of shadow mask. It has been seen that the rectification ratio of Au/ZnO device obtained using annealed ZnO thin film is higher than the one obtained using unannealed ZnO thin film. The characteristic parameters of Au/ZnO junctions such as ideality factor, barrier height and series resistance obtained by current-voltage (I-V) measurements of the structures at room temperature and in dark have been compared with each others. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2490

    RETRACTED: Monolayers of pigment-protein complexes on a bare gold electrode:Orientation controlled deposition and comparison of electron transfer rate for two configurations

    Get PDF
    Photosynthetic protein complexes are very efficient in solar energy absorption, excitation transfer, and subsequent electron transfer. These complexes have the potential to be exploited as circuit elements for various bio-hybrid devices, ranging from biosensors to solar cells. In this report, we characterized a bioelectronic composite fabricated by interfacing reaction center-light harvesting 1 (RC-LH1) complex with an un-functionalized gold surface in defined orientation. The orientation of RC-LH1 complex was controlled by using Langmuir-Blodgett (LB) deposition technique: RC-LH1 complexes were attached to the electrode facing either with their primary donor or the acceptor sides by'"forward" or'"reverse" dipping, respectively. Photochronoamperometry was utilized to confirm the integrity of the protein complexes and their orientation. Electrical transport of protein complexes coupled to gold electrode was studied by using conductive atomic force microscopy (C-AFM). Two distinct current-voltage (I-. V) curves were observed for two different deposition schemes, indicating opposite orientations of RC-LH1 complexes on the electrode. I-. V spectroscopy was also carried out under light illumination, the magnitude of current was considerably increased by the light illumination and the asymmetry of the curves was more pronounced. We show that, RC-LH1 complexes attached to the electrode with primary donor side facing the electrode exhibit much faster electron transfer compared to opposite orientatio

    The effects of water on the morphology and the swelling behavior of sulfonated poly(ether ether ketone) films

    Get PDF
    Thin sulfonated poly(ether ether ketone) films swell excessively in water. The extent of water-induced swelling is shown to be correlated with the optical anisotropy of the films, due to two distinct phenomena. Firstly, the optical anisotropy is directly related to the amount of water taken up from the surrounding ambient atmosphere, and thus to amount of water present in the material just prior to swelling. Secondly, the optical anisotropy corresponds to internal stresses in the film that affect the free energy of the film, and thus the potential of the film to swell. The anisotropy vanishes upon sorption of liquid water and returns when the water is desorbed. When the water is completely removed, the film changes from more or less colorless to an intense yellow color that can be attributed to molecular assembly of the aromatic rings in the polymer backbone. The color change is reversible and occurs immediately upon exposure to low humidity. For films prepared in the absence of water, the lack of hydration of the sulfonic acid groups affects the microphase separation behavior of the polymer. This is manifested by an apparent lower propensity to water-induced swelling. The possibility to affect the properties of sulfonated polymer films by varying the hydration state of the polymer during preparation can have important implications for applications of such films

    Use of SU8 as a stable and biocompatible adhesion layer for gold bioelectrodes.

    Get PDF
    Gold is the most widely used electrode material for bioelectronic applications due to its high electrical conductivity, good chemical stability and proven biocompatibility. However, it adheres only weakly to widely used substrate materials such as glass and silicon oxide, typically requiring the use of a thin layer of chromium between the substrate and the metal to achieve adequate adhesion. Unfortunately, this approach can reduce biocompatibility relative to pure gold films due to the risk of the underlying layer of chromium becoming exposed. Here we report on an alternative adhesion layer for gold and other metals formed from a thin layer of the negative-tone photoresist SU-8, which we find to be significantly less cytotoxic than chromium, being broadly comparable to bare glass in terms of its biocompatibility. Various treatment protocols for SU-8 were investigated, with a view to attaining high transparency and good mechanical and biochemical stability. Thermal annealing to induce partial cross-linking of the SU-8 film prior to gold deposition, with further annealing after deposition to complete cross-linking, was found to yield the best electrode properties. The optimized glass/SU8-Au electrodes were highly transparent, resilient to delamination, stable in biological culture medium, and exhibited similar biocompatibility to glass

    Surface Characteristics of Particleboard Produced from Hydro-thermally Treated Wheat Stalks

    No full text
    Surface characteristics were studied for particleboards produced from hydro-thermally treated (HTT) and non-treated (NT) wheat stalk (WS). Wood and wheat stalk particles were used as experimental materials. The wheat stalk particles were subjected to HTT at a temperature of 180 degrees C for 8 minutes in a steam explosion machine. HTT and NT WS particles were added at 10%, 20%, 30%, and 40% to the wood particles. The surface roughness and wettability of the produced panels were determined. The roughness measurements, average roughness (R-a), maximum roughness (R-max), and mean peak-to-valley height (R-z) were performed using a fine stylus tracing technique. The wetting behavior of the panels was characterized by the contact angle method (goniometer technique). The contact angle (CA) measurements were obtained by using a KSV Cam-101 Scientific Instrument connected with a digital camera and computer system. Statistical analyses showed significant differences in the surface roughness and wettability of the particleboards following hydro-thermal modification. The addition of WS to the panels significantly decreased the roughness values. However, all of the HTT groups exhibited higher roughness compared to NT groups. The CA values decreased when the WS content increased. The wettability of the particleboard containing HTT WS particles was improved.Duzce University Research FundDuzce University [2017.02.03.550]This work was supported by Duzce University Research Fund (Project Number: 2017.02.03.550).WOS:00058380290002

    UTILIZATION OF TINDER FUNGUS AS FILLER IN PRODUCTION OF HDPE/WOOD COMPOSITE

    No full text
    Selected physical and mechanical properties of high density polyethylene (HDPE) composites filled with various mixtures of wood flour and tinder fungus (Fomes fomentarius) were investigated. For this aim, different mixtures of tinder fungus flour and wood flour (0/40, 10/30, 20/20, and 30/10, and 40/0) (by weight) were compounded with HDPE with a coupling agent (maleic anhydride grafted polyethylene (MAPE) in a twin screw co-rotating extruder. The test specimens were produced by injection moulding machine. The thickness swelling and water absorption of the HDPE/wood composites significantly decreased with increasing content of the tinder fungus flour. The mechanical properties of the composites were negatively affected by increasing amount of tinder fungus flour but there were no significant differences up to 30 wt % tinder fungus content, except for the tensile strength. The optimum physical and mechanical properties for the filled HDPE composites were found to be a 10/30/60/3 formulation of wood flour, tinder fungus, HDPE, and MAPE, respectively
    corecore