5 research outputs found

    HPLC-DAD/TOF-MS Chemical Compounds Analysis and Evaluation of Antibacterial Activity of Aristolochia longa Root Extracts

    Get PDF
    The present study aimed to determine the phenolic compounds of Arislolochia Ion& root extracts and to evaluate their antibacterial activities on multiresistant strains. Phytochemical analysis revealed the presence of flavonoids, tannins, terpenoids, and alkaloids. The HPLC-DAD analysis of A. longa extracts showed the presence of several major bioactive compounds such as ferulic acid, 4-hydroxycinnamic acid, citric acid, and quinic acid. The agar diffusion method was used for the sensitivity test, while minimal inhibitory concentration (MIC) and minimal bactericidal concentration values were determined by microdilution assay. Different tests were carried out on 3 clinical multiresistant strains and 3 reference strains. The diameter of inhibition of Staphylococcus aureus ATCC 25923 induced by the ethyl acetate fraction at 200 mg/mL was 25 +/- 1 mm. Moreover, Escherichia coli ATCC 29522 showed a great sensitivity toward all the concentrations tested. The MICs of the active extracts vary between 12.5 and 100 mg/mL with a bacteriostatic effect on Pseudomonas aemginosa ATCC 27853, Enterococcus faecalis, and S. aureus ATCC 25923.Peer reviewe

    Epidemiology and antibiotic resistance profile of bacterial meningitis in Morocco from 2015 to 2018

    Get PDF
    Over a 4-year study period from 2015 to 2018, altogether 183 isolates of bacterial meningitis were collected from 12 hospitals covering the entire Moroccan territory. Neisseria meningitidis represented 58.5%, Streptococcus pneumoniae 35.5%, and Haemophilus influenzae type b 6%. H. influenzae type b mainly affected 5-year-olds and unvaccinated adults. N. meningitidis serogroup B represented 90.7% followed by serogroup W135 with 6.5%. Decreased susceptibility to penicillin G (DSPG) for all isolates accounted for 15.7%, with 11.6% being resistant to penicillin G (PG) and 4.1% decreased susceptibility. Cumulative results of all strains showed 2.7% decreased susceptibility to amoxicillin and 3.3% resistant, 2.2% of isolates were resistant to third-generation cephalosporin and 2.2% were decreased susceptible, 5.5% were resistant to chloramphenicol and 2.7% were resistant to rifampin. The frequency of DSPG observed in our study is more common in S. pneumoniae than in N. meningitidis (P < 0.05). These isolates have been found to be highly susceptible to antibiotics used for treatment and prophylaxis chemotherapy and the observed resistance remains rare. The impact of introduction of conjugate vaccines against H. influenzae type b and S. pneumoniae (PCVs) is an advantage in reducing meningitis cases due to these two species. © 2020 Akademiai Kiado, Budapest

    High salivary levels of JP2 genotype of Aggregatibacter actinomycetemcomitans is associated with clinical attachment loss in Moroccan adolescents

    No full text
    It has previously been shown that the presence of Aggregatibacter actinomycetemcomitans in subgingival plaque is significantly associated with increased risk for clinical attachment loss. The highly leukotoxic JP2 genotype of this bacterium is frequently detected in adolescents with aggressive forms of periodontitis. The aims of the study were to quantify the levels of JP2 and non-JP2 genotypes of A. actinomycetemcomitans in saliva of Moroccan adolescents with the JP2 genotype earlier detected in the subgingival plaque. The salivary concentrations of inflammatory proteins were quantified and linked to the clinical parameters and microbial findings. Finally, a mouth rinse with leukotoxin-neutralizing effect was administrated and its effect on the levels the biomarkers and A. actinomycetemcomitans examined. The study population consisted of 22 adolescents that previously were found to be positive for the JP2 genotype in subgingival plaque. Periodontal registration and sampling of stimulated saliva was performed at baseline. A mouth rinse (active/placebo) was administrated, and saliva sampling repeated after 2 and 4 weeks rinse. The salivary levels of JP2 and non-JP2 were analyzed by quantitative PCR and inflammatory proteins by ELISA. Both the JP2 and the non-JP2 genotype were detected in all individuals with significantly higher levels of the non-JP2. Enhanced levels of the JP2 genotype of A. actinomycetemcomitans was significantly correlated to the presence of attachment loss (≥3 mm). Salivary concentrations of inflammatory biomarkers did not correlate to periodontal condition or levels of A. actinomycetemcomitans. The use of active or placebo leukotoxin-neutralizing mouth rinse did not significantly interfered with the levels of these biomarkers. Saliva is an excellent source for detection of A. actinomycetemcomitans on individual basis, and high levels of the JP2 genotype were significantly associated with the presence of clinical attachment loss

    Chemical Composition, Antimicrobial activity, in Vitro Cytotoxicity and Leukotoxin Neutralization of Essential Oil from Origanum vulgare against Aggregatibacter actinomycetemcomitans

    No full text
    In this study, the essential oil of Origanum vulgare was evaluated for putative antibacterial activity against six clinical strains and five reference strains of Aggregatibacter actinomycetemcomitans, in comparison with some antimicrobials. The chemical composition of the essential oil was analyzed, using chromatography (CG) and gas chromatography-mass spectrometry coupled (CG-MS). The major compounds in the oil were Carvacrol (32.36%), α-terpineol (16.70%), p-cymene (16.24%), and Thymol (12.05%). The antimicrobial activity was determined by an agar well diffusion test. A broth microdilution method was used to study the minimal inhibitory concentration (MIC). The minimal bactericidal concentration (MBC) was also determined. The cytotoxicity of the essential oil (IC50) was &lt;125 µg/mL for THP-1 cells, which was high in comparison with different MIC values for the A. actinomycetemcomitans strains. O. vulgare essential oil did not interfere with the neutralizing capacity of Psidium guajava against the A. actinomycetemcomitans leukotoxin. In addition, it was shown that the O. vulgare EO had an antibacterial effect against A. actinomycetemcomitans on a similar level as some tested antimicrobials. In view of these findings, we suggest that O.vulgare EO may be used as an adjuvant for prevention and treatment of periodontal diseases associated to A. actinomycetemcomitans. In addition, it can be used together with the previously tested leukotoxin neutralizing Psidium guajava
    corecore