703 research outputs found

    Acute Ethanol Administration Rapidly Increases Phosphorylation of Conventional Protein Kinase C in Specific Mammalian Brain Regions in Vivo

    Get PDF
    Background Protein kinase C (PKC) is a family of isoenzymes that regulate a variety of functions in the central nervous system including neurotransmitter release, ion channel activity, and cell differentiation. Growing evidence suggests that specific isoforms of PKC influence a variety of behavioral, biochemical, and physiological effects of ethanol in mammals. The purpose of this study was to determine whether acute ethanol exposure alters phosphorylation of conventional PKC isoforms at a threonine 674 (p-cPKC) site in the hydrophobic domain of the kinase, which is required for its catalytic activity. Methods Male rats were administered a dose range of ethanol (0, 0.5, 1, or 2 g/kg, intragastric) and brain tissue was removed 10 minutes later for evaluation of changes in p-cPKC expression using immunohistochemistry and Western blot methods. Results Immunohistochemical data show that the highest dose of ethanol (2 g/kg) rapidly increases p-cPKC immunoreactivity specifically in the nucleus accumbens (core and shell), lateral septum, and hippocampus (CA3 and dentate gyrus). Western blot analysis further showed that ethanol (2 g/kg) increased p-cPKC expression in the P2 membrane fraction of tissue from the nucleus accumbens and hippocampus. Although p-cPKC was expressed in numerous other brain regions, including the caudate nucleus, amygdala, and cortex, no changes were observed in response to acute ethanol. Total PKC? immunoreactivity was surveyed throughout the brain and showed no change following acute ethanol injection

    Au/TiO2(110) interfacial reconstruction stability from ab initio

    Full text link
    We determine the stability and properties of interfaces of low-index Au surfaces adhered to TiO2(110), using density functional theory energy density calculations. We consider Au(100) and Au(111) epitaxies on rutile TiO2(110) surface, as observed in experiments. For each epitaxy, we consider several different interfaces: Au(111)//TiO2(110) and Au(100)//TiO2(110), with and without bridging oxygen, Au(111) on 1x2 added-row TiO2(110) reconstruction, and Au(111) on a proposed 1x2 TiO reconstruction. The density functional theory energy density method computes the energy changes on each of the atoms while forming the interface, and evaluates the work of adhesion to determine the equilibrium interfacial structure.Comment: 20 pages, 11 figure

    Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts

    Get PDF
    The incidence of craniosynostosis is one in every 1,800-2500 births. The gene-environment model proposes that if a genetic predisposition is coupled with environmental exposures, the effects can be multiplicative resulting in severely abnormal phenotypes. At present, very little is known about the role of gene-environment interactions in modulating craniosynostosis phenotypes, but prior evidence suggests a role for endocrine factors. Here we provide a report of the effects of thyroid hormone exposure on murine calvaria cells. Murine derived calvaria cells were exposed to critical doses of pharmaceutical thyroxine and analyzed after 3 and 7 days of treatment. Endpoint assays were designed to determine the effects of the hormone exposure on markers of osteogenesis and included, proliferation assay, quantitative ALP activity assay, targeted qPCR for mRNA expression of Runx2, Alp, Ocn, and Twist1, genechip array for 28,853 targets, and targeted osteogenic microarray with qPCR confirmations. Exposure to thyroxine stimulated the cells to express ALP in a dose dependent manner. There were no patterns of difference observed for proliferation. Targeted RNA expression data confirmed expression increases for Alp and Ocn at 7 days in culture. The genechip array suggests substantive expression differences for 46 gene targets and the targeted osteogenesis microarray indicated 23 targets with substantive differences. 11 gene targets were chosen for qPCR confirmation because of their known association with bone or craniosynostosis (Col2a1, Dmp1, Fgf1, 2, Igf1, Mmp9, Phex, Tnf, Htra1, Por, and Dcn). We confirmed substantive increases in mRNA for Phex, FGF1, 2, Tnf, Dmp1, Htra1, Por, Igf1 and Mmp9, and substantive decreases for Dcn. It appears thyroid hormone may exert its effects through increasing osteogenesis. Targets isolated suggest a possible interaction for those gene products associated with calvarial suture growth and homeostasis as well as craniosynostosis. © 2013 Cray et al

    ATP release during cell swelling activates a Ca2+-dependent Cl - Current by autocrine mechanism in mouse hippocampal microglia

    Get PDF
    Microglia cells, resident immune cells of the brain, survey brain parenchyma by dynamically extending and retracting their processes. Cl- channels, activated in the cellular response to stretch/swelling, take part in several functions deeply connected with microglia physiology, including cell shape changes, proliferation, differentiation and migration. However, the molecular identity and functional properties of these Cl- channels are largely unknown. We investigated the properties of swelling-activated currents in microglial from acute hippocampal slices of Cx3cr1+/GFP mice by whole-cell patch-clamp and imaging techniques. The exposure of cells to a mild hypotonic medium, caused an outward rectifying current, developing in 5-10 minutes and reverting upon stimulus washout. This current, required for microglia ability to extend processes towards a damage signal, was carried mainly by Cl- ions and dependent on intracellular Ca2+. Moreover, it involved swelling-induced ATP release. We identified a purine-dependent mechanism, likely constituting an amplification pathway of current activation: under hypotonic conditions, ATP release triggered the Ca2+-dependent activation of anionic channels by autocrine purine receptors stimulation. Our study on native microglia describes for the first time the functional properties of stretch/swelling-activated currents, representing a key element in microglia ability to monitor the brain parenchyma

    A phase II trial of gefitinib as first-line therapy for advanced non-small cell lung cancer with epidermal growth factor receptor mutations

    Get PDF
    Retrospective analysis has shown that activating mutations in exons 18–21 of the epidermal growth factor receptor (EGFR) gene are a predictor of response to gefitinib. We conducted a phase II trial to evaluate the efficacy and safety of gefitinib as first-line therapy for advanced non-small cell lung cancer (NSCLC) with EGFR mutations. Patients with stage IIIB or IV chemotherapy-naïve NSCLC with EGFR mutation were treated with 250 mg gefitinib daily. For mutational analysis, DNA was extracted from paraffin-embedded tissues and EGFR mutations were analysed by direct sequence of PCR products. Twenty (24%) of the 82 patients analysed had EGFR mutations (deletions in or near E746-A750, n=16; L858R, n=4). Sixteen patients were enrolled and treated with gefitinib. Twelve patients had objective response and response rate was 75% (95% CI, 48–93%). After a median follow-up of 12.7 months (range, 3.1–16.8 months), 10 patients demonstrated disease progression, with median progression-free survival of 8.9 months (95% CI, 6.7–11.1 months). The median overall survival time has not yet been reached. Most of the toxicities were mild. This study showed that gefitinib is very active and well tolerated as first-line therapy for advanced NSCLC with EGFR mutations

    Is there a role for the quantification of RRM1 and ERCC1 expression in pancreatic ductal adenocarcinoma?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RRM1 and ERCC1 overexpression has been extensively investigated as potential predictive markers of tumor sensitivity to conventional chemotherapy agents, most thoroughly in lung cancer. However, data in pancreatic cancer are scarce.</p> <p>Methods</p> <p>We investigated the mRNA and protein expression of ERCC1 and RRM1 by RT-PCR and immunohistochemistry (IHC) in formalin-fixed, paraffin-embedded pancreatic ductal carcinoma (PDA) tissues. The primary outcome investigated was the association between RRM1 and ERCC1 expression and overall survival (OS) or disease-free survival (DFS).</p> <p>Results</p> <p>A total of 94 patients with resected PDA were included in this study. Most of them (87%) received gemcitabine based chemotherapy. Data for OS analysis was available in all cases but only 68% had enough information to estimate DFS. IHC analysis revealed information for 99% (93/94) and 100% of the cases for RRM1 and ERCC1 expression respectively. However, PCR data interpretation was possible in only 49 (52%) and 79 (84%) cases respectively. There was no significant association between high or low expression of either RRM1 or ERCC1, detected by IHC and OS (14.4 vs. 19.9 months; <it>P </it>= 0.5 and 17.1 vs. 19.9; <it>P </it>= 0.83 respectively) or PCR and OS (48.0 vs. 24.1 months; <it>P </it>= 0.21 and 22.0 vs. 16.0 months; <it>P </it>= 0.39 respectively). Similar results were obtained for DFS.</p> <p>Conclusions</p> <p>RRM1 and ERCC1 expression does not seem to have a clear predictive or prognostic value in pancreatic cancer. Our data raise some questions regarding the real clinical and practical significance of analyzing these molecules as predictors of outcomes.</p

    Role of Bcl-2 as a prognostic factor for survival in lung cancer: a systematic review of the literature with meta-analysis

    Get PDF
    The role of the anti-apoptotic protein Bcl-2 in lung cancer remains controversial. In order to clarify its impact on survival in small and non-small cell lung cancer (NSCLC), we performed a systematic review of the literature. Trials were selected for further analysis if they provided an independent assessment of Bcl-2 in lung cancer and reported analysis of survival data according to Bcl-2 status. To make it possible to aggregate survival results of the published studies, their methodology was assessed using a quality scale designed by the European Lung Cancer Working Party (including study design, laboratory methods and analysis). Of 28 studies, 11 identified Bcl-2 expression as a favourable prognostic factor and three linked it with poor prognosis; 14 trials were not significant. No differences in scoring measurement were detected between the studies, except that significantly higher scores were found in the trials with the largest sample sizes. Assessments of methodology and of laboratory technique were made independently of the conclusion of the trials. A total of 25 trials, comprising 3370 patients, provided sufficient information for the meta-analysis. The studies were categorised according to histology, disease stage and laboratory technique. The combined hazard ratio (HR) suggested that a positive Bcl-2 status has a favourable impact on survival: 0.70 (95% confidence interval 0.57-0.86) in seven studies on stages I-II NSCLC; 0.50 (0.39-0.65) in eight studies on surgically resected NSCLC; 0.91 (0.76-1.10) in six studies on any stage NSCLC; 0.57 (0.41-0.78) in five studies on squamous cell cancer; 0.75 (0.61-0.93) and 0.71 (0.61-0.83) respectively for five studies detecting Bcl-2 by immunohistochemistry with Ab clone 100 and for 13 studies assessing Bcl-2 with Ab clone 124; 0.92 (0.73-1.16) for four studies on small cell lung cancer; 1.26 (0.58-2.72) for three studies on neuroendocrine tumours. In NSCLC, Bcl-2 expression was associated with a better prognosis. The data on Bcl-2 expression in small cell lung cancer were insufficient to assess its prognostic value.Journal ArticleMeta-AnalysisResearch Support, Non-U.S. Gov'tReviewinfo:eu-repo/semantics/publishe

    Frequent expression of new cancer/testis gene D40/AF15q14 in lung cancers of smokers

    Get PDF
    We found a significant correlation between lung cancer in smokers and the expression of a human gene, D40, predominantly expressed in testis and cancers. In an attempt to clone a novel human gene, we screened a cDNA library derived from a human B cell line and obtained a cDNA clone that we refer to as D40. A search for public databases for sequence homologies showed that the D40 gene is identical to AF15q14. D40 mRNA is predominantly expressed in normal testis tissue. However, this gene is also expressed in various human tumour cell lines and primary tumours derived from various organs and tissues, such as lung cancer. We examined the relationship between D40 expression and clinico-pathological characteristics of tumours in primary lung cancer. D40 expression did not significantly correlate with either histological type or pathological tumour stage. However, D40 expression was observed more frequently in poorly differentiated tumours than in well or moderately differentiated ones. Furthermore, the incidence of D40 expression was significantly higher in tumours from patients who smoke than in those from non-smokers. D40/AF15q14 is the first gene in the cancer/testis family for which expression is related to the smoking habits of cancer patients
    corecore