67 research outputs found

    Does the tube-compensation function of two modern mechanical ventilators provide effective work of breathing relief?

    Get PDF
    OBJECTIVE: An endotracheal tube (ETT) imposes work of breathing on mechanically ventilated patients. Using a bellows-in-a-box model lung, we compared the tube compensation (TC) performances of the Nellcor Puritan-Bennett 840 ventilator and of the Dräger Evita 4 ventilator. MEASUREMENTS AND RESULTS: Each ventilator was connected to the model lung. The respiratory rate of the model lung was set at 10 breaths/min with 1 s inspiratory time. Inspiratory flows were 30 or 60 l/min. A full-length 8 mm bore ETT was inserted between the ventilator circuit and the model lung. The TC was set at 0%, 10%, 50%, and 100% for both ventilators. Pressure was monitored at the airway, the trachea, and the pleura, and the data were recorded on a computer for later analysis of the delay time, of the inspiratory trigger pressure, and of the pressure–time product (PTP). The delay time was calculated as the time between the start of inspiration and minimum airway pressure, and the inspiratory trigger pressure was defined as the most negative pressure level. The same measurements were performed under pressure support ventilation of 4 and 8 cmH(2)O. The PTP increased according to the magnitude of inspiratory flow. Even with 100% TC, neither ventilator could completely compensate for the PTP imposed by the ETT. At 0% TC the PTP tended to be less with the Nellcor Puritan-Bennett 840 ventilator, while at 100% TC the PTP tended to be less with the Dräger Evita 4 ventilator. A small amount of pressure support can be equally effective to reduce the inspiratory effort compared with the TC. CONCLUSION: Although both ventilators provided effective TC, even when set to 100% TC they could not entirely compensate for a ventilator and ETT-imposed work of breathing. The effect of TC is less than that of pressure support ventilation. Physicians should be aware of this when using TC in weaning trials

    Time definition of reintubation most relevant to patient outcomes in critically ill patients: a multicenter cohort study

    Get PDF
    Background: Reintubation is a common complication in critically ill patients requiring mechanical ventilation. Although reintubation has been demonstrated to be associated with patient outcomes, its time definition varies widely among guidelines and in the literature. This study aimed to determine the association between reintubation and patient outcomes as well as the consequences of the time elapsed between extubation and reintubation on patient outcomes. Methods: This was a multicenter retrospective cohort study of critically ill patients conducted between April 2015 and March 2021. Adult patients who underwent mechanical ventilation and extubation in intensive care units (ICUs) were investigated utilizing the Japanese Intensive Care PAtient Database. The primary and secondary outcomes were in-hospital and ICU mortality. The association between reintubation and clinical outcomes was studied using Cox proportional hazards analysis. Among the patients who underwent reintubation, a Cox proportional hazard analysis was conducted to evaluate patient outcomes according to the number of days from extubation to reintubation. Results: Overall, 184,705 patients in 75 ICUs were screened, and 1849 patients underwent reintubation among 48,082 extubated patients. After adjustment for potential confounders, multivariable analysis revealed a significant association between reintubation and increased in-hospital and ICU mortality (adjusted hazard ratio [HR] 1.520, 95% confidence interval [CI] 1.359–1.700, and adjusted HR 1.325, 95% CI 1.076–1.633, respectively). Among the reintubated patients, 1037 (56.1%) were reintubated within 24 h after extubation, 418 (22.6%) at 24–48 h, 198 (10.7%) at 48–72 h, 111 (6.0%) at 72–96 h, and 85 (4.6%) at 96–120 h. Multivariable Cox proportional hazard analysis showed that in-hospital and ICU mortality was highest in patients reintubated at 72–96 h (adjusted HR 1.528, 95% CI 1.062–2.197, and adjusted HR 1.334, 95% CI 0.756–2.352, respectively; referenced to reintubation within 24 h). Conclusions: Reintubation was associated with a significant increase in in-hospital and ICU mortality. The highest mortality rates were observed in patients who were reintubated between 72 and 96 h after extubation. Further studies are warranted for the optimal observation of extubated patients in clinical practice and to strengthen the evidence for mechanical ventilation.Tanaka A., Shimomura Y., Uchiyama A., et al. Time definition of reintubation most relevant to patient outcomes in critically ill patients: a multicenter cohort study. Critical Care 27, 378 (2023); https://doi.org/10.1186/s13054-023-04668-3

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    編集委員会より

    No full text

    編集委員会より

    No full text

    編集委員会より

    No full text

    人工呼吸管理中の自発呼吸の功罪

    No full text

    Monitoring diaphragm function in a patient with myasthenia gravis: electrical activity of the diaphragm vs. maximal inspiratory pressure

    No full text
    Abstract Background Maximal inspiratory pressure (MIP) is used to assess respiratory muscle strength of patients with myasthenia gravis (MG) requiring ventilatory support. Electrical activity of the diaphragm (E-di) has been used to guide weaning. Case presentation The MIP and tidal volume/ΔE-di (the patient-to-ventilator breath contribution) were monitored in a 12-year-old girl with MG requiring ventilator support. The same ventilatory settings were maintained until extubation. During weaning, MIP increased slightly, but varied unpredictably. Tidal volume/ΔE-di decreased at a constant rate as muscle strength recovered. Conclusion In this patient with muscle weakness, E-di was a reliable tool to monitor weaning from mechanical ventilation
    corecore