334 research outputs found

    E1 transitions between spin-dipole and Gamow-Teller giant resonances

    Get PDF
    The branching ratios for E1 transitions between the spin-dipole (SD) and Gamow-Teller (GT) giant resonances in 90^{90}Nb and 208^{208}Pb are evaluated. Assuming the main GT-state has the wave function close to that for the "ideal" GT-state, we reduced the problem to calculate the SD and GT strength functions. These strength functions are evaluated within an extended continuum-RPA approach.Comment: 8 pages, submitted to Phys. Rev.

    Thin Ice Target for 16^{16}O(p,p') experiment

    Full text link
    A windowless and self-supporting ice target is described. An ice sheet with a thickness of 29.7 mg/cm2^2 cooled by liquid nitrogen was placed at the target position of a magnetic spectrometer and worked stably in the 16^{16}O(p,pâ€Č)(p,p') experiment at Ep=392E_{p}=392 MeV. Background-free spectra were obtained.Comment: 14 pages, 4 figures, Nucl. Instr. & Meth. A (in press

    Nuclear matrix element for two neutrino double beta decay from 136Xe

    Full text link
    The nuclear matrix element for the two neutrino double beta decay (DBD) of 136Xe was evaluated by FSQP (Fermi Surface Quasi Particle model), where experimental GT strengths measured by the charge exchange reaction and those by the beta decay rates were used. The 2 neutrino DBD matrix element is given by the sum of products of the single beta matrix elements via low-lying (Fermi Surface) quasi-particle states in the intermediate nucleus. 136Xe is the semi-magic nucleus with the closed neutron-shell, and the beta + transitions are almost blocked. Thus the 2 neutrino DBD is much suppressed. The evaluated 2 neutrino DBD matrix element is consistent with the observed value.Comment: 7 pages 6 figure

    Proton decay from the isoscalar giant dipole resonance in 58^{58}Ni

    Full text link
    Proton decay from the 3ℏω\hbar\omega isoscalar giant dipole resonance (ISGDR) in 58^{58}Ni has been measured using the (α,αâ€Čp\alpha,\alpha'p) reaction at a bombarding energy of 386 MeV to investigate its decay properties. We have extracted the ISGDR strength under the coincidence condition between inelastically scattered α\alpha particles at forward angles and decay protons emitted at backward angles. Branching ratios for proton decay to low-lying states of 57^{57}Co have been determined, and the results compared to predictions of recent continuum-RPA calculations. The final-state spectra of protons decaying to the low-lying states in 57^{57}Co were analyzed for a more detailed understanding of the structure of the ISGDR. It is found that there are differences in the structure of the ISGDR as a function of excitation energy.Comment: Minor changes after review. Accepted for publication in Phys. Rev. C. 19 pages; 7 figure

    The high-lying 6^6Li levels at excitation energy around 21 MeV

    Get PDF
    The 3^3H+3^3He cluster structure in 6^6Li was investigated by the 3^3H(α\alpha,3^3H 3^3He)n kinematically complete experiment at the incident energy EαE_\alpha = 67.2 MeV. We have observed two resonances at Ex∗E_x^* = 21.30 and 21.90 MeV which are consistent with the 3^3He(3^3H, Îł\gamma)6^6Li analysis in the Ajzenberg-Selove compilation. Our data are compared with the previous experimental data and the RGM and CSRGM calculations.Comment: 12 pages, 6 figures. Accepted for publication in J. Phys. Soc. Jp

    Uncomputably noisy ergodic limits

    Get PDF
    V'yugin has shown that there are a computable shift-invariant measure on Cantor space and a simple function f such that there is no computable bound on the rate of convergence of the ergodic averages A_n f. Here it is shown that in fact one can construct an example with the property that there is no computable bound on the complexity of the limit; that is, there is no computable bound on how complex a simple function needs to be to approximate the limit to within a given epsilon

    Photo-disintegration cross section measurements on 186^{186}W, 187^{187}Re and 188^{188}Os: Implications for the Re-Os cosmochronology

    Full text link
    Cross sections of the 186^{186}W, 187^{187}Re, 188^{188}Os(Îł,n\gamma,n) reactions were measured using quasi-monochromatic photon beams from laser Compton scattering (LCS) with average energies from 7.3 to 10.9 MeV. The results are compared with the predictions of Hauser-Feshbach statistical calculations using four different sets of input parameters. In addition, the inverse neutron capture cross sections were evaluated by constraining the model parameters, especially the E1E1 strength function, on the basis of the experimental data. The present experiment helps to further constrain the correction factor FσF_{\sigma} for the neutron capture on the 9.75 keV state in 187^{187}Os. Implications of FσF_{\sigma} to the Re-Os cosmochronology are discussed with a focus on the uncertainty in the estimate of the age of the Galaxy.Comment: 11 page

    Testing the Mutually Enhanced Magicity Effect in Nuclear Incompressibility via the Giant Monopole Resonance in the 204,206,208^{204,206,208}Pb Isotopes

    Full text link
    Using inelastic α\alpha-scattering at extremely forward angles, including 0∘0^\circ, the strength distributions of the isoscalar giant monopole resonance (ISGMR) have been measured in the 204,206,208^{204,206,208}Pb isotopes in order to examine the proposed mutually enhanced magicity (MEM) effect on the nuclear incompressibility. The MEM effect had been suggested as a likely explanation of the "softness" of nuclear incompressibility observed in the ISGMR measurements in the Sn and Cd isotopes. Our experimental results rule out any manifestation of the MEM effect in nuclear incompressibility and leave the question of the softness of the open-shell nuclei unresolved still.Comment: Accepted for publication in Physics Letters B. Very minor changes in tex
    • 

    corecore