85 research outputs found

    Enhanced superconducting transition temperatures in the rocksalt-type superconductors In1-xSnxTe (x <= 0.5)

    Get PDF
    We investigate superconductivity in In1-xSnxTe (x <= 0.5) synthesized at high pressures of up to 2 GPa and observe an enhancement of the superconducting transition temperature T-c for increasing tin concentration x. These compounds have not been accessible in rocksalt structure via conventional ambient pressure synthesis. While the lattice constant smoothly increases with x, T-c saturates around x = 0.4. Electronic structure calculations indicate that the Tc modulation is brought on by the change of the density of states in the vicinity of the Fermi energy [N(E-F)]. However, differences between the calculated N(E-F) and the observed electronic specific-heat coefficient indicate that the phonon dispersion plays an important role in the system and that the mechanism of superconductivity may not be the same in the entire doping range

    Tunneling spectra of break junctions involving Nb₃Sn

    No full text
    The electronic gap structure of Nb3Sn was measured by the break-junction (BJ) tunneling technique. The superconducting gap values are estimated to be in the range 2∆ = 4–5.5 meV at T = 4.2 K as follows from the observed distinct conductance peaks. In addition to the superconducting gap structure, we observed reproducible hump-like structures at the biases of about ± 20 and ± 50 mV. Such a coexistence of gap and hump structures resembles the situation found in the high-Tc copper-oxide superconductors. Above the superconducting critical temperature Tc ~ 18 K, the humps appear as the only gap-like structures. Their possible origin is discussed in connection to the structural phase transition occurring in Nb₃Sn

    Cisplatin-induced programmed cell death ligand-2 expression is associated with metastasis ability in oral squamous cell carcinoma.

    Get PDF
    Programmed cell death ligands (PD-Ls) are expressed in tumor cells where they bind to programmed cell death-1, an immunocyte co-receptor, resulting in tumor cell evasion from the immune system. Chemotherapeutic drugs have been recently reported to induce the expression of PD-L, such as PD-L1, in some cancer cells. However, little is known regarding PD-L2 expression and its role in oral squamous cell carcinoma (OSCC). In this study, we examined the effect of cisplatin on the expression and regulation of PD-L2 in OSCC cell lines and analyzed malignant behavior in PD-L2-expressing cells using colony, transwell and transformation assays. In addition, we examined PD-L2 expression in the tumor tissues of OSCC patients using cytology and tissue microarray methods. In OSCC cell lines, cisplatin treatment upregulated PD-L2 expression, along with that of the drug efflux transporter ABCG2, via signal transducers and activator of transcription (STAT) 1/3 activation. Moreover, PD-L2-positive or PD-L2-overexpressing cells demonstrated upregulation in both invasion and transformation ability but not in proliferation compared with PD-L2-negative or PD-L2-silencing cells. PD-L2 expression was also observed in OSCC cells of cytology samples and tissue from OSCC patients. The intensity of PD-L2 expression was correlated with more malignant morphological features in the histological appearance and an invasive pattern. Our findings indicate that cisplatin-upregulated PD-L2 expression in OSCC via STAT1/3 activation and the expression of PD-L2 are likely to be associated with malignancy in OSCC. The PD-L2 expression in cisplatin-resistant OSCC cells may be a critical factor in prognosis of advanced OSCC patients.福岡歯科大学2019年

    Paramagnetic magnetostriction in the chiral magnet CrNb3S6 at room temperature

    Get PDF
    We report that the magnetostriction (MS) effects occur in a paramagnetic state of a chiral magnet CrNb3S6. Through a series of experimental tests at room temperature, structural changes were observed at the level of a unit cell. The structural parameters are dependent of the strength and direction of magnetic field (H) even at temperature excessively higher than the magnetic ordering temperature Tc of 127 K. The present paramagnetic MS prominently appeared under H∥ the ab plane (easy plane) as opposed to under H∥ the c axis. Features observed in the paramagnetic MS effect significantly differ from those of the spontaneous MS in the vicinity of Tc [Phys. Rev. B 102, 014446 (2020)]. In this material, the orbital angular momentum L of Cr originates from the hybridization between Cr and Nb, and L is strongly coupled with the crystal structure [Phys. Rev. B 99, 174439 (2019)]. The present study clarified that the symmetry of the CrS6 octahedron is sensitive to H even at room temperature. The paramagnetic spin-orbit coupling should induce the distortion of CrS6 octahedron, resulting in the changes in Cr-Nb(4f) distance via the change in the hybridization between Cr-a1g and Nb-4dz2 orbitals

    Magnetic Resonance in the Chiral Helimagnet CrNb3S6

    Get PDF
    Recently, magnetic substances with chirality, namely the handedness of the magnetic structure, have attracted considerable attention because of the anomalous phenomena which appear in magnetic fields. CrNb3S6 is one of the chiral magnets formed by exchange and Dzyaloshinsky-Moriya (DM) interactions. Electron spin resonance (ESR) measurements of CrNb3S6 in magnetic fields parallel to the c-axis (helical axis) have been performed to evaluate the exchange and the DM constants that determine the helical structure. Fitting the ESR data to a calculated mode based on a spin wave theory yields values for the ferromagnetic inter-plane exchange constant J/kB = 16.2 K, the DM constant D/kB = 1.29 K, and the single-ion anisotropy constant K /kB = 1.02 K. From the Curie-Weiss temperature θCW ~ 145 K, large intra-plane ferromagnetic exchange interactions are suggested.20th International Conference on Magnetism(ICM 2015), 5th to 10th July, 2015, Barcelona, Spai

    Discrete Change in Magnetization by Chiral Soliton Lattice Formation in the Chiral Magnet Cr1/3NbS2

    Get PDF
    In the chiral magnet Cr1/3NbS2, discrete changes in the magnetization (M) caused by the formation of a chiral soliton lattice (CSL) were observed in magnetization curve measurements using a single crystal of submillimeter thickness. When M is measured with a minimal increment of the magnetic field H, 0.15 Oe, discrete changes in M are observed in the H region that exhibits definite magnetic hysteresis. In particular, enormous discrete changes in M are observed as H decreases from the field above the saturation field, while fine M steps are also found in the intermediate H range independently of the sweeping direction of the field. The former is considered as a type of enormous Barkhausen effect associated with the CSL formation. The latter originates from the change in soliton number during the CSL formation

    Saturated Linkers in Two-Dimensional Covalent Organic Frameworks Boost Their Luminescence

    Get PDF
    The development of highly luminescent two-dimensional covalent organic frameworks (COFs) for sensing applications remains challenging. To suppress commonly observed photoluminescence quenching of COFs, we propose a strategy involving interrupting the intralayer conjugation and interlayer interactions using cyclohexane as the linker unit. By variation of the building block structures, imine-bonded COFs with various topologies and porosities are obtained. Experimental and theoretical analyses of these COFs disclose high crystallinity and large interlayer distances, demonstrating enhanced emission with record-high photoluminescence quantum yields of up to 57% in the solid state. The resulting cyclohexane-linked COF also exhibits excellent sensing performance for the trace recognition of Fe3+ ions, explosive and toxic picric acid, and phenyl glyoxylic acid as metabolites. These findings inspire a facile and general strategy to develop highly emissive imine-bonded COFs for detecting various molecules.journal articl
    corecore