5 research outputs found
Preclinical metabolism and the disposition of vornorexant/TSâ142, a novel dual orexin 1/2 receptor antagonist for the treatment of insomnia
Abstract We investigated the metabolism and disposition of vornorexant, a novel dual orexin receptor antagonist, in rats and dogs, and clarified in vitro metabolite profiles in humans. Furthermore, we investigated the pharmacokinetics of active metabolites in rats and dogs and their CNS distribution in rats to elucidate its contribution to drug efficacy. [14C]vornorexant was rapidly and mostly absorbed after the oral administration in rats and dogs. The drugâderived radioactivity, including metabolites, was distributed to major organs such as the liver, kidneys in rats, and was almost eliminated within 24âh postâdose in both species. Metabolite profiling revealed that main clearance mechanism of vornorexant was metabolism via multiple pathways by oxidation. The major circulating components were the cleaved metabolites (M10, M12) in rats, and the unchanged form in dogs, followed by M1, and then M3. Incubation with human hepatocytes resulted in formation of metabolites, including M1, M3, M10, and M12. The metabolic pathways were similar in all tested species. Resulting from the PK and CNS distribution of active metabolites (M1 and M3) with weaker pharmacological activity, the concentration of the unchanged form was higher than that of active metabolites in rat CSF and dog plasma, suggesting that the unchanged form mainly contributed to the drug efficacy. These findings demonstrate that vornorexant is absorbed immediately after administration, and vornorexant and its metabolites are rapidly and completely eliminated in rats and dogs. Thus, vornorexant may have favorable pharmacokinetic profiles as a hypnotic drug to provide rapid onset of action and minimal nextâday residual effects in humans
Using the drug repositioning approach to develop a novel therapy, tipepidine hibenzate sustained-release tablet (TS-141), for children and adolescents with attention-deficit/hyperactivity disorder
Background Asverin (R) (tipepidine hibenzate) has been used as an antitussive for > 50 years in Japan. Studies revealed that tipepidine modulates monoamine levels, by inhibiting G-protein-activated inwardly rectifying potassium (GIRK) channels, expecting the potential therapeutic effects of tipepidine for attention-deficit/hyperactivity disorder (ADHD) in recent years. In this study, TS-141, a sustained-release tablet of tipepidine, was developed for the treatment of ADHD through a drug repositioning approach. Methods The sustained-release profile of TS-141 in healthy adults was investigated, and tipepidine exposure in the plasma after the TS-141 administration was compared to that of Asverin in the phase I study. Phase II study was conducted to examine the effects of TS-141 30 (once a day), 60 (once a day), 120 mg (60 mg twice a day), or placebo, that is within the exposure in the maximum dosage of Asverin, in children and adolescents with ADHD, and was designed as an 8-week treatment, randomized, parallel group, double-blind, placebo-controlled trial recruiting 6-17-year-old children and adolescents diagnosed with ADHD. A total of 216 patients were randomized according to the CYP2D6 phenotype. The primary end-point was ADHD Rating Scale IV-J changes. Furthermore, effects of CYP2D6 phenotype on the efficacy in the subgroup analysis were investigated. Results TS-141 had the sustained-release profile, and the CYP2D6 phenotype had effects on the plasma exposure of tipepidine. ADHD RS-IV-J scores in all TS-141 dosages decreased from their baseline scores; however, no significant difference was observed in ADHD RS-IV-J score changes between the placebo and TS-141-administered groups. In patients with intermediate metabolizer CYP2D6, ADHD RS-IV-J score changes in the 120 mg group tended to be larger than that in the placebo group. Conclusions ADHD RS-IV-J changes on TS-141 may depend on the interaction between the TS-141 dose and CYP2D6 phenotype, suggesting that further clinical trials should be conducted with careful consideration of polymorphism. Drug repositioning approach of TS-141 was attempted at the same dose as that of antitussive; however, dose setting according to the indication was necessary