133 research outputs found

    Considerations in hiPSC-derived cartilage for articular cartilage repair

    Get PDF
    Background: A lack of cell or tissue sources hampers regenerative medicine for articular cartilage damage. Main text: We review and discuss the possible use of pluripotent stem cells as a new source for future clinical use. Human induced pluripotent stem cells (hiPSCs) have several advantages over human embryonic stem cells (hESCs). Methods for the generation of chondrocytes and cartilage from hiPSCs have been developed. To reduce the cost of this regenerative medicine, allogeneic transplantation is preferable. hiPSC-derived cartilage shows low immunogenicity like native cartilage, because the cartilage is avascular and chondrocytes are segregated by the extracellular matrix. In addition, we consider our experience with the aberrant deposition of lipofuscin or melanin on cartilage during the chondrogenic differentiation of hiPSCs. Short conclusion: Cartilage generated from allogeneic hiPSC-derived cartilage can be used to repair articular cartilage damage

    Quality assessment tests for tumorigenicity of human iPS cell-derived cartilage

    Get PDF
    Takei Y., Morioka M., Yamashita A., et al. Quality assessment tests for tumorigenicity of human iPS cell-derived cartilage. Scientific Reports 10, 12794 (2020); https://doi.org/10.1038/s41598-020-69641-4.Articular cartilage damage does not heal spontaneously and causes joint dysfunction. The implantation of induced pluripotent stem cell (iPSC)-derived cartilage (iPS-Cart) is one candidate treatment to regenerate the damaged cartilage. However, concerns of tumorigenicity are associated with iPS-Cart, because the iPSC reprogramming process and long culture time for cartilage induction could increase the chance of malignancy. We evaluated the tumorigenic risks of iPS-Cart using HeLa cells as the reference. Spike tests revealed that contamination with 100 HeLa cells in 150 mg of iPS-Cart accelerated the cell growth rate. On the other hand, 150 mg of iPS-Cart without HeLa cells reached growth arrest and senescence after culture, suggesting less than 100 tumorigenic cells, assuming they behave like HeLa cells, contaminated iPS-Cart. The implantation of 10,000 or fewer HeLa cells into joint surface defects in the knee joint of nude rat did not cause tumor formation. These in vitro and in vivo studies collectively suggest that the implantation of 15 g or less iPS-Cart in the knee joint does not risk tumor formation if assuming that the tumorigenic cells in iPS-Cart are equivalent to HeLa cells and that nude rat knee joints are comparable to human knee joints in terms of tumorigenicity. However, considering the limited immunodeficiency of nude rats, the clinical amount of iPS-Cart for implantation needs to be determined cautiously

    A Patient With Thiamine Deficiency Exhibiting Muscle Edema Suggested by MRI

    Get PDF
    Myalgia is sometimes observed in patients with thiamine-deficiency neuropathy. However, the detailed mechanism(s) underlying muscular manifestations have been poorly elucidated. We herein report a possible patient with thiamine-deficiency neuropathy exhibiting muscle weakness and myalgia in lower limbs. The patient exhibited abnormal muscle signal intensities on MRI corresponding to the site of myalgia. After thiamine replacement therapy, rapid improvement of clinical symptoms and abnormal MRI findings were observed. Muscle MRI findings in this case implicated the possible mechanism of myalgia observed in patients with thiamine deficiency neuropathy

    ICONE14-89378 EXPERIMENTAL STUDY ON STRUCTUAL INTEGRITY OF A CORE SHROUD SUPPORT WITH A CRACK UNDER SEISMIC LOAD

    Get PDF
    ABSTRACT This study was performed to experimentally confirm the conservatism of the integrity assessment procedure for a cracked core shroud support of the boiling water reactor (BWR) under seismic load. From the comparison of the experimental and analytical results, it is shown that finite element method (FEM) is accurate and collapse load estimated by twice-elastic slope method is conservative

    Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand–receptor relationships

    Get PDF
    AbstractMedaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain–hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand–receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8–Fgfr1 while maintaining the ligand–receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function

    A novel indole compound MA-35 attenuates renal fibrosis by inhibiting both TNF-α and TGF-β1 pathways

    Get PDF
    Renal fibrosis is closely related to chronic inflammation and is under the control of epigenetic regulations. Because the signaling of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) play key roles in progression of renal fibrosis, dual blockade of TGF-β1 and TNF-α is desired as its therapeutic approach. Here we screened small molecules showing anti-TNF-α activity in the compound library of indole derivatives. 11 out of 41 indole derivatives inhibited the TNF-α effect. Among them, Mitochonic Acid 35 (MA-35), 5-(3, 5-dimethoxybenzyloxy)-3-indoleacetic acid, showed the potent effect. The anti-TNF-α activity was mediated by inhibiting IκB kinase phosphorylation, which attenuated the LPS/GaIN-induced hepatic inflammation in the mice. Additionally, MA-35 concurrently showed an anti-TGF-β1 effect by inhibiting Smad3 phosphorylation, resulting in the downregulation of TGF-β1-induced fibrotic gene expression. In unilateral ureter obstructed mouse kidney, which is a renal fibrosis model, MA-35 attenuated renal inflammation and fibrosis with the downregulation of inflammatory cytokines and fibrotic gene expressions. Furthermore, MA-35 inhibited TGF-β1-induced H3K4me1 histone modification of the fibrotic gene promoter, leading to a decrease in the fibrotic gene expression. MA-35 affects multiple signaling pathways involved in the fibrosis and may recover epigenetic modification; therefore, it could possibly be a novel therapeutic drug for fibrosis

    Rationale and Design of a Prospective, Multicentre, Stop Tyrosine Kinase Inhibitor Trial of Paediatric Patients with Chronic Myeloid Leukaemia with Sustained Complete Molecular Response (STKI-14)

    Get PDF
    Chronic myeloid leukaemia (CML) is a relatively rare disease in children, accounting for 2–3% of all paediatric leukaemia cases. Generally, children with CML can avoid hematopoietic stem cell transplantation and achieve molecular responses with tyrosine kinase inhibitors (TKI). However, CML stem cells are thought to survive in many patients, even after TKI treatment. Many aspects of the toxic effects of prolonged exposure to TKIs during childhood remain unclear, particularly those regarding growth impairment. This lack of clarity underscores the importance of the present clinical trial, which aims to clarify the feasibility of treatment-free remission (TFR) in children following TKI treatment. We aim to examine the long-term out-comes and complications of TKIs before and after cessation to better understand the unknown complications that could arise in adulthood. This trial targets patients who were diagnosed with CML at an age younger than 20 years, were in the chronic or accelerated phase at initial diagnosis and remained in complete molecular remission for at least 2 years after TKI administration. We will examine the utility of TKI cessation and assess the treatment results of patients who resumed TKI therapy after losing a major molecular response. We will also investigate factors related to the feasibility of a TFR after TKI cessation

    Pneumonia Caused by Severe Acute Respiratory Syndrome Coronavirus 2 and Influenza Virus: A Multicenter Comparative Study

    Get PDF
    Background: Detailed differences in clinical information between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia (CP), which is the main phenotype of SARS-CoV-2 disease, and influenza pneumonia (IP) are still unclear. Methods: A prospective, multicenter cohort study was conducted by including patients with CP who were hospitalized between January and June 2020 and a retrospective cohort of patients with IP hospitalized from 2009 to 2020. We compared the clinical presentations and studied the prognostic factors of CP and IP. Results: Compared with the IP group (n = 66), in the multivariate analysis, the CP group (n = 362) had a lower percentage of patients with underlying asthma or chronic obstructive pulmonary disease (P < .01), lower neutrophil-to-lymphocyte ratio (P < .01), lower systolic blood pressure (P < .01), higher diastolic blood pressure (P < .01), lower aspartate aminotransferase level (P < .05), higher serum sodium level (P < .05), and more frequent multilobar infiltrates (P < .05). The diagnostic scoring system based on these findings showed excellent differentiation between CP and IP (area under the receiver operating characteristic curve, 0.889). Moreover, the prognostic predictors were different between CP and IP. Conclusions: Comprehensive differences between CP and IP were revealed, highlighting the need for early differentiation between these 2 pneumonias in clinical settings

    Mitochonic Acid 5 (MA-5) Facilitates ATP Synthase Oligomerization and Cell Survival in Various Mitochondrial Diseases

    Get PDF
    Mitochondrial dysfunction increases oxidative stress and depletes ATP in a variety of disorders. Several antioxidant therapies and drugs affecting mitochondrial biogenesis are undergoing investigation, although not all of them have demonstrated favorable effects in the clinic. We recently reported a therapeutic mitochondrial drug mitochonic acid MA-5 (Tohoku J. Exp. Med., 2015). MA-5 increased ATP, rescued mitochondrial disease fibroblasts and prolonged the life span of the disease model “Mitomouse” (JASN, 2016). To investigate the potential of MA-5 on various mitochondrial diseases, we collected 25 cases of fibroblasts from various genetic mutations and cell protective effect of MA-5 and the ATP producing mechanism was examined. 24 out of the 25 patient fibroblasts (96%) were responded to MA-5. Under oxidative stress condition, the GDF-15 was increased and this increase was significantly abrogated by MA-5. The serum GDF-15 elevated in Mitomouse was likewise reduced by MA-5. MA-5 facilitates mitochondrial ATP production and reduces ROS independent of ETC by facilitating ATP synthase oligomerization and supercomplex formation with mitofilin/Mic60. MA-5 reduced mitochondria fragmentation, restores crista shape and dynamics. MA-5 has potential as a drug for the treatment of various mitochondrial diseases. The diagnostic use of GDF-15 will be also useful in a forthcoming MA-5 clinical trial
    corecore