63 research outputs found

    Magnetic Instability of Pr3Ru4Sn13

    Full text link
    We report on the quantum criticality of Pr3_3Ru4_4Sn13_{13} revealed by our new material research. Pr3_3Ru4_4Sn13_{13} has been synthesized by flux growth and characterized by single X-ray, powder X-ray, and powder neutron diffraction measurements. The compound adopts a Yb3_3Rh4_4Sn13_{13}-type structure with a cubic Pm3ˉ\bar{3}n. From the magnetization at 1 T, the effective magnetic moment was estimated to be 3.58 μB\mu _B per Pr3+^{3+}, suggesting that the magnetism is mainly contributed by Pr3+^{3+} ions. The specific heat and magnetization show an anomaly at TN=7.5T_{N} = 7.5 ~ K owing to the phase transition. The muon spin rotation and relaxation (μ\muSR) time spectra exhibit clear oscillations below TNT_N. This suggests that the phase is magnetically ordered. The volume fraction of the magnetic phase estimated from the initial asymmetry is around ten percent. In addition, spin fluctuations were observed at low temperatures. These results provide microscopic evidence that the material is closest to the antiferromagnetically quantum critical point with a partial order among Pr3_3T4T_4Sn13_{13} (T=T= Co, Ru, Rh).Comment: 14 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp

    Coupled spin-charge-phonon fluctuation in the all-in/all-out antiferromagnet Cd2Os2O7

    Get PDF
    We report on a spin-charge fluctuation in the all-in/all-out pyrochlore magnet Cd2Os2O7, where the spin fluctuation is driven by the conduction of thermally excited electrons/holes and associated fluctuation of Os valence. The fluctuation exhibits an activation energy significantly greater than the spin-charge excitation gap and a peculiar frequency range of 10(6)-10(10) s(-1). These features are attributed to the hopping motion of carriers as small polarons in the insulating phase, where the polaron state is presumably induced by the magnetoelastic coupling via the strong spin-orbit interaction. Such a coupled spin-charge-phonon fluctuation manifests as a part of the metal-insulator transition that is extended over a wide temperature range due to the modest electron correlation comparable with other interactions characteristic for 5d-subshell systems

    Na-ion mobility in P2-type Na0.5MgxNi0.17-xMn0.83O2 (0

    Get PDF
    Sodium transition metal oxides with a layered structure are one of the most widely studied cathode materials for Na+-ion batteries. Since the mobility of Na+ in such cathode materials is a key factor that governs the performance of material, electrochemical and muon spin rotation and relaxation techniques are here used to reveal the Na+-ion mobility in a P2-type Na0.5MgxNi0.17-xMn0.83O2 (x = 0, 0.02, 0.05 and 0.07) cathode material. Combining electrochemical techniques such as galvanostatic cycling, cyclic voltammetry, and the galvanostatic intermittent titration technique with mu+SR, we have successfully extracted both self-diffusion and chemical-diffusion under a potential gradient, which are essential to understand the electrode material from an atomic-scale viewpoint. The results indicate that a small amount of Mg substitution has strong effects on the cycling performance and the Na+ mobility. Amongst the tested cathode systems, it was found that the composition with a Mg content of x = 0.02 resulted in the best cycling stability and highest Na+ mobility based on electrochemical and mu+SR results. The current study clearly shows that for developing a new generation of sustainable energy-storage devices, it is crucial to study and understand both the structure as well as dynamics of ions in the material on an atomic level

    Effect of Zn substitution for Cu on Ca2−x_{2-x}Nax_{x}CuO2_{2}Cl2_{2} near the hole concentration of 1/8 per Cu

    Full text link
    A weakening of superconductivity upon substitution of Cu by Zn (0.5~1 %) is observed in a high-T_c cuprate, Ca_{2-x}Na_xCuO2Cl2, near the hole concentration of 1/8 per Cu. The superconducting transition temperature and its volume fraction, estimated by magnetic susceptibility, exhibit a sizable anomaly for x=0.12~0.14, where the slowing down of Cu spin fluctuations below 5 K is demonstrated by muon spin relaxation experiments. These observations are in close resemblance to other typical cuprates including YBa2Cu3O_{7-d}, and Bi2Sr2Ca_{1-x}Y_xCu2O_{8+d}, providing further evidence that Zn-induced "stripe" correlation is a universal feature of high-T_c cuprate superconductors common to that of La_{2-x}A_{x}CuO4 (A=Ba, Sr).Comment: 4 pages, 3 figure
    • …
    corecore