43 research outputs found
Recommended from our members
Chronic allergic lung inflammation negatively influences neurobehavioral outcomes in mice
Background
Asthma is a major public health problem worldwide. Emerging data from epidemiological studies show that allergies and allergic diseases may be linked to anxiety, depression and cognitive decline. However, little is known about the effect of asthma, an allergic lung inflammation, on cognitive decline/behavioral changes. Therefore, we investigated the hypothesis that allergic lung inflammation causes inflammation in the brain and leads to neurobehavioral changes in mice.
Methods
Wild-type C57BL/6J female mice were sensitized with nasal house dust mite (HDM) antigen or control PBS for 6 weeks to induce chronic allergic lung inflammation. A series of neurocognitive tests for anxiety and/or depression were performed before and after the intranasal HDM administration. After the behavior tests, tissues were harvested to measure inflammation in the lungs and the brains.
Results
HDM-treated mice exhibited significantly increased immobility times during tail suspension tests and significantly decreased sucrose preference compared with PBS controls, suggesting a more depressed and anhedonia phenotype. Spatial memory impairment was also observed in HDM-treated mice when assessed by the Y-maze novel arm tests. Development of lung inflammation after 6 weeks of HDM administration was confirmed by histology, bronchoalveolar lavage (BAL) cell count and lung cytokine measurements. Serum pro-inflammatory cytokines and Th2-related cytokines levels were elevated in HDM-sensitized mice. In the brain, the chemokine fractalkine was increased in the HDM group. The c-Fos protein, a marker for neuronal activity, Glial Fibrillary Acidic Protein (GFAP) and chymase, a serine protease from mast cells, were increased in the brains from mice in HDM group. Chymase expression in the brain was negatively correlated with the results of sucrose preference rate in individual mice.
Conclusions
6 weeks of intranasal HDM administration in mice to mimic the chronic status of lung inflammation in asthma, caused significant inflammatory histological changes in the lungs, and several behavioral changes consistent with depression and altered spatial memory. Chymase and c-Fos proteins were increased in the brain from HDM-treated mice, suggesting links between lung inflammation and brain mast cell activation, which could be responsible for depression-like behavior
A circulating subset of iNKT cells mediates antitumor and antiviral immunity
新規の循環型iNKT細胞を発見 --抗腫瘍・抗ウイルス感染効果の高い免疫細胞療法の開発への貢献に期待--. 京都大学プレスリリース. 2022-10-24.Invariant natural killer T (iNKT) cells are a group of innate-like T lymphocytes that recognize lipid antigens. They are supposed to be tissue resident and important for systemic and local immune regulation. To investigate the heterogeneity of iNKT cells, we recharacterized iNKT cells in the thymus and peripheral tissues. iNKT cells in the thymus were divided into three subpopulations by the expression of the natural killer cell receptor CD244 and the chemokine receptor CXCR6 and designated as C0 (CD244⁻CXCR6⁻), C1 (CD244⁻CXCR6⁺), or C2 (CD244⁺CXCR6⁺) iNKT cells. The development and maturation of C2 iNKT cells from C0 iNKT cells strictly depended on IL-15 produced by thymic epithelial cells. C2 iNKT cells expressed high levels of IFN-γ and granzymes and exhibited more NK cell–like features, whereas C1 iNKT cells showed more T cell–like characteristics. C2 iNKT cells were influenced by the microbiome and aging and suppressed the expression of the autoimmune regulator AIRE in the thymus. In peripheral tissues, C2 iNKT cells were circulating that were distinct from conventional tissue-resident C1 iNKT cells. Functionally, C2 iNKT cells protected mice from the tumor metastasis of melanoma cells by enhancing antitumor immunity and promoted antiviral immune responses against influenza virus infection. Furthermore, we identified human CD244⁺CXCR6⁺ iNKT cells with high cytotoxic properties as a counterpart of mouse C2 iNKT cells. Thus, this study reveals a circulating subset of iNKT cells with NK cell–like properties distinct from conventional tissue-resident iNKT cells
Factors affecting extubation time following pediatric ambulatory surgery: an analysis using electronic anesthesia records from an academic university hospital
Abstract Background In pediatric general anesthesia, our goal should be quicker extubation to facilitate rapid turnover in the operating room without compromising on safety and quality of anesthesia. Although many studies have focused on improving safety and pursuing a higher quality of recovery, factors related to anesthesia emergence remain unclear. We must, therefore, identify factors that influence the process of emergence from general anesthesia in children. Findings We retrospectively examined 148 children (aged 1–6 years, American Society of Anesthesiologists physical status: 1–2) who had undergone <2 h of ambulatory surgery. Clinical measures included time from the end of surgery to extubation (extubation time), age, height, weight, surgical time, mean indirect blood pressure during surgery, mean heart rate during surgery, mean end-tidal carbon dioxide during surgery (mETCO2), mean body temperature during surgery (mBT), and total amount of fentanyl. Anesthetic procedures involved sevoflurane or propofol. Multiple regression analysis revealed that mETCO2 (p < 0.01) and mBT (p < 0.01) were independent clinical factors associated with extubation time following pediatric ambulatory surgery. Conclusions This study of 148 pediatric patients demonstrated that anesthesia emergence may be associated with mBT and mETCO2 following pediatric ambulatory surgery. These results show that perioperative vital signs are important in the prevention of delayed emergence for pediatric patients
Specific requirement of DRB4, a dsRNA-binding protein, for the in vitro dsRNA-cleaving activity of Arabidopsis Dicer-like 4
Arabidopsis thaliana Dicer-like 4 (DCL4) produces 21-nt small interfering RNAs from both endogenous and exogenous double-stranded RNAs (dsRNAs), and it interacts with DRB4, a dsRNA-binding protein, in vivo and in vitro. However, the role of DRB4 in DCL4 activity remains unclear because the dsRNA-cleaving activity of DCL4 has not been characterized biochemically. In this study, we biochemically characterize DCL4's Dicer activity and establish that DRB4 is required for this activity in vitro. Crude extracts from Arabidopsis seedlings cleave long dsRNAs into 21-nt small RNAs in a DCL4/DRB4-dependent manner. Immunoaffinity-purified DCL4 complexes produce 21-nt small RNAs from long dsRNA, and these complexes have biochemical properties similar to those of known Dicer family proteins. The DCL4 complexes purified from drb4-1 do not cleave dsRNA, and the addition of recombinant DRB4 to drb4-1 complexes specifically recovers the 21-nt small RNA generation. These results reveal that DCL4 requires DRB4 to cleave long dsRNA into 21-nt small RNAs in vitro. Amino acid substitutions in conserved dsRNA-binding domains (dsRBDs) of DRB4 impair three activities: binding to dsRNA, interacting with DCL4, and facilitating DCL4 activity. These observations indicate that the dsRBDs are critical for DRB4 function. Our biochemical approach and observations clearly show that DRB4 is specifically required for DCL4 activity in vitro
Quantification of muscle tone by using shear wave velocity during an anaesthetic induction: a prospective observational study
Abstract Objectives The quantitative assessment of muscle stiffness or weakness is essential for medical care. Shear wave elastography is non-invasive ultrasound method and provides quantitative information on the elasticity of soft tissue. However, the universal velocity scale for quantification has not been developed. The aim of the study is to determine the shear wave velocities of abdominal muscle during anesthetic induction and to identify methods to cancel the effects of confounders for future development in the quantitative assessment of muscle tone using the universal scale. Methods We enrolled 75 adult patients undergoing elective surgery with ASA-PS I – III in the period between December 2018 and March 2021. We measured and calculated the shear wave velocity (SWV) before and after opioid administration (i.e., the baseline at rest and opioid-induced rigidity condition), and after muscle relaxant administration (i.e., zero reference condition). The SWV value was adjusted for the subcutaneous fat thickness by our proposed corrections. The SWVs after the adjustment were compared among the values in baseline, rigidity, and relaxation using one-way repeated-measures ANOVA and post hoc Tukey–Kramer test. A p-value of < 0.05 was considered to be statistically significant. UMIN Clinical Trials Registry identifier UMIN000034692, registered on October 30, 2018. Results The SWVs in the baseline, opioid-induced rigidity, and muscle relaxation conditions after the adjustment were 2.08 ± 0.48, 2.41 ± 0.60, and 1.79 ± 0.30 m/s, respectively (p < 0.001 at all comparisons). Conclusion The present study suggested that the SWV as reference was 1.79 m/s and that the SWVs at rest and opioid-induced rigidity were ~ 10% and ~ 30% increase from the reference, respectively. The SWV adjusted for the subcutaneous fat thickness may be scale points for the assessment of muscle tone